# An Interleaved High-Step-Up Converter with Improved Voltage Gain and Leakage Inductance Energy Recycled

Kuo-Ing Hwu<sup>1\*</sup> and Li-Ching Yang<sup>2</sup>

# ABSTRACT

An interleaved high-step-up converter with voltage gain and improved leakage inductance energy recycling is presented. The tested device achieves a higher voltage gain by use of coupled inductors and energy-transferring capacitors. Implementation of non-floating switches means that no isolated drivers are required. The operating principle and an analysis of the converter are provided and a prototype was built and tested using a 38V input voltage and 400V output voltage, to validate the actual effectiveness of the project.

Keywords: Coupled inductor, Energy-transferring capacitor, High-step-up converter.

# 1. INTRODUCTION

With global increases in the number and type of electronic devices, and with rapid developments in science and technology, energy demands continue to grow. To facilitate sustainable activities and develop a more environmentally sustainable projects renewable energy sources are now under intensive development. While they may be initially costly to implement, compared to existing means, solar energy, wind power generators, fuel cells, and so on provide great long term potential (Li et al. 2009; Li et al. 2009; Boico et al. 2007). Solar power generation systems and DC-DC converters are of particular interest to researchers because many renewable energy systems, solar included, have a relatively low or unstable output voltage. One means to correct this issue is to install a high boost converter. Conventional boost converters and buck-boost converters are used because of their small component count, simple structure, and low cost. However, since the maximum voltage gain of these devices are limited by their parasitic elements, the voltage gain drops sharply when the duty cycle approaches one (Lin et al. 2013), thus it is difficult for them to achieve a high level voltage boost.

Electronic engineering literature is now replete with voltage-boosting converters, and it is necessary to undertake a brief review of what has been done so far. Existing converters typically fall into several categories, energy-transferring capacitors (Liang et al. 2013; Tseng *et al.* 2015; Park *et al.* 2011; Silveira *et al.* 2014), coupled inductors (Liang *et al.* 2013; Tseng *et al.* 2015; Park *et al.* 2011; Silveira *et al.* 2014; Young *et al.* 2014; Tang *et al.* 2015), voltage doubler circuits (Young *et al.* 2014; Tang *et al.* 2015), interleaved circuits (Gules *et al.* 2003; Li and He 2011; Li *et al.* 2012; Dwari and Parsa 2011; Zheng *et al.* 2019; Lai *et al.* 2012; Pan and Lai 2010; Hosseini *et al.* 2014; Tseng and Huang 2014; Tseng *et al.* 2015; Hu and Gong 2015; Pan *et al.* 2014; Pan *et al.* 2013; Pan *et al.* 2016) and more. However, in (Liang et al. 2013; Tseng et al. 2015; Park et al. 2011; Silveira et al. 2014; Young et al. 2014; Tang et al. 2015; Gules et al. 2003; Li and He 2011; Li et al. 2012), in order to achieve a high voltage gain, applying too many charge pump capacitors to switches and inductors was shown to lead to overly complex structures and generally reduce converter reliability. As shown in other research (Liang et al. 2013), the capacitor module, along with the coupled inductor, not only achieves a high voltage boost, but also has a low voltage stress on the switch, reducing losses. Tseng et al. 2015, Park et al. 2011, and Silveira et al. 2014 showed that by superimposing more than two energy-transferring capacitors to achieve high voltage gain, the type of converter used needs to connect an output capacitor to reduce output ripple. Further, literature on voltage doublers (Young et al. 2014; Tang et al. 2015) showed that the required voltage can be realized by a circuit composed of a plurality of capacitors and diodes. The traditional approach to doubling piezoelectricity is shown in (Young et al. 2014), which increases the capacitance and the diode to achieve a high boosting effect. As shown in (Tang et al. 2015), the combination of inductor and diode can also be used to double a voltage. This method makes the voltage doubler circuit more flexible in its application.

Other studies (Gules et al. 2003; Li and He 2011; Li et al. 2012; Dwari and Parsa 2011; Zheng et al. 2019; Lai et al. 2012; Pan and Lai 2010; Hosseini et al. 2014; Tseng and Huang 2014; Tseng et al. 2015; Hu and Gong 2015; Pan et al. 2014; Pan et al. 2013; Pan et al. 2016) showed that two or more identical circuits can be applied to an interleaved converter to generate a high boost. This type of converter has the advantage of reducing the component current stress, but with the attendant cost of increasing the number of components used. The converter used in (Gules et al. 2003) is composed of two conventional boost converters, two capacitors and two diodes. Whereas, (Li and He 2011; Li et al. 2012) used the inductive coupling of two conventional boost converters to reduce the conduction loss of the diode, improving overall efficiency. Other papers such as (Dwari and Parsa 2011) used a coupled inductor to reduce voltage surges caused by the body diode of the switch when the switch is turned off, which aided in energy recovery from the leakage inductance. As shown in (Zheng et al. 2019), several energy-transferring capacitors can be added to the circuit topology to give a converter improved voltage gains. Another high-boost circuit with an interleaved architecture

Manuscript received September 8, 2020; revised September 11, 2020; accepted September 17, 2020.

<sup>&</sup>lt;sup>1\*</sup>Professor (corresponding author), Department of Electrical Engineering, National Taipei University of Technology, Taiwan 10608, R.O.C. (e-mail: eaglehwu@ntut.edu.tw).

<sup>&</sup>lt;sup>2</sup> Student, Department of Electrical Engineering, National Taipei University of Technology, Taiwan 10608, R.O.C.

was proposed in (Lai et al. 2012), but the switching duty cycle of this converter had to be above 50%. A modified version of this idea was shown in (Lai et al. 2012) and (Pan and Lai 2010), by the addition of a coupled inductor in the converter; this reduced the voltage across the active switch, thereby reducing switching losses. Other researchers (Hosseini et al. 2014) demonstrated a high boost by interleaving two coupled inductors. However, in as demonstrated in (Tseng and Huang 2014; Tseng et al. 2015; Hu and Gong 2015), the apparent disadvantages of the large number of components becomes apparent; in this case two coupled inductors were applied to the interleaved converter and cooperated with the superimposed output capacitors to achieve a high voltage gain. The paper by (Pan et al. 2014) shows a modified version of (Lai et al. 2012) with a higher voltage gain than the original; however Pan continued the work (Pan et al. 2013; Pan et al. 2016) by using a parallel circuit topology involving four conventional boost converters. Although this circuit was able to withstand a higher input current, the efficiency was limited by the excessive number of components.

Despite this slew of research interest, this paper proposes another solution. This design includes an interleaved high-boost converter, with leakage inductance energy recycled, and with an improved voltage gain compared to the circuit demonstrated by (Gules et al. 2003). This design derives the high voltage gain from its coupled inductor and energy-transference capacitor. The converter has the following characteristics: (1) Leakage inductance energy can be recovered. There is no clamp circuit, making the device simple; (2) The main switches used share a common ground, removing the need to use an isolated drive circuit; (3) The coupled inductor has both transformer and inductor behavior, which means that the voltage across the energy-transferring capacitor can be improved by adjusting the turns ratio. As with the input inductor of a conventional boost converter, the magnetizing inductance can be used as a voltage-boosting inductor; and (4) The input current ripple of the converter can be reduced, so a capacitor with a lower capacitance value can be used.

# 2. CIRCUIT DESCRIPTION

Figure 1 shows the architecture of the new high-boost converter proposed herein. This architecture features input current sharing and leakage inductance energy recovery, reducing any voltage surge on the active switch. Additionally, due to the interleave circuit, the phase difference between the two phases is 180 degrees, which reduces input current ripple and output voltage ripple. The converter consists of two active switches  $S_1$ ,  $S_2$ , two coupled inductors  $N_{p1}$ ,  $N_{s1}$  and  $N_{p2}$ ,  $N_{s2}$ , two energy-transferring capacitors  $C_1$ ,  $C_2$ , four diodes  $D_1$ ,  $D_2$ ,  $D_3$ ,  $D_4$ , and one output capacitor  $C_o$ . The dotted terminals of the primary windings  $N_{p1}$  and  $N_{p2}$  are both connected to the positive terminal of the input voltage, and the non-dotted terminals of the primary side windings  $N_{p1}$  and  $N_{p2}$  are connected to the dotted terminals of the secondary windings,  $N_{s1}$  and  $N_{s2}$ , respectively. These are also connected to the individual switches and capacitors  $S_1$  and  $C_2$ , and  $S_2$  and  $C_1$ . Input voltage is at  $V_{in}$ , output voltage is  $V_o$ , and output resistance is  $R_{o}$ .

# 3. CIRCUIT OPERATING PRINCIPLES

Figure 2 shows an equivalent circuit diagram of the proposed converter. The two coupled inductors are composed of two ideal



Fig. 1 Schematic diagram of the proposed converter.



Fig. 2 Equivalent schematic diagram of the proposed converter.

transformers which have primary-side windings  $N_{p1}$ ,  $N_{p2}$ , and secondary side-windings  $N_{s1}$ ,  $N_{s2}$ . The magnetizing inductances  $L_{m1}$ ,  $L_{m2}$  are connected in parallel with the primary-side windings  $N_{p1}$  and  $N_{p2}$ , respectively; and the four leakage inductances  $L_{lk1}$ ,  $L_{lk2}$ ,  $L_{lk3}$ ,  $L_{lk4}$ . In order to simplify this analysis the following assumptions are made:

- (1) Assume that the converter operates in CCM.
- (2) All diodes and switches except for parasitic diodes and capacitors are assumed to be ideal components.
- (3) All capacitances are large enough to keep their voltages at certain values.
- (4) The two turns-ratio are identical, that is,  $n = N_{s1}/N_{p1} = N_{s2}/N_{p2}$ .
- (5)  $T_s$  is the switching period.

The current flow description for each operating state is included in the following analysis and the associated symbols are thus defined: (i) Input current is expressed by  $i_{in}$ , where the currents flowing through  $N_{p1}$ ,  $L_{m1}$ ,  $L_{lk1}$ , and  $N_{s1}$  are indicated by  $i_{Np1}$ ,  $i_{Lm1}$ ,  $i_{lk1}$ , and  $i_{D1}$ , respectively; currents flowing through  $N_{p2}$ ,  $L_{m2}$ ,  $L_{lk3}$ , and  $N_{s2}$  are represented by  $i_{Np2}$ ,  $i_{Lm2}$ ,  $i_{lk3}$ , and  $i_{D3}$ , respectively; currents flowing through  $S_1$ ,  $S_2$ ,  $D_2$ ,  $D_4$ ,  $C_1$ ,  $C_2$ , and  $R_o$  are represented by  $i_{ds1}$ ,  $i_{ds2}$ ,  $i_{D2}$ ,  $i_{D4}$ ,  $i_{C1}$ ,  $i_{C2}$ , and  $I_o$ , respectively; (ii) The voltages across the primary windings  $N_{p1}$  and  $N_{p2}$  are  $v_{Lm1}$  and  $v_{Lm2}$ , respectively; voltages across the secondary windings  $N_{s1}$  and  $N_{s2}$  are  $v_{ds1}$  and  $v_{ds2}$ , respectively; the voltages across  $D_1$ ,  $D_2$ ,  $D_3$ , and  $D_4$  are  $v_{D1}$ ,  $v_{D2}$ ,  $v_{D3}$ , and  $v_{D4}$ , respectively; the voltages across the energy-transferring capacitors  $C_1$  and  $C_2$  are  $V_{C1}$  and  $V_{C2}$ , respectively; and the voltage across the output capacitor  $C_o$  is  $V_o$ .



Fig. 3 Key waveforms relevant to the proposed converter operating over one switching period.

Because this converter operates in CCM, there are a total of eight operating states in each switching period. Furthermore, as this architecture is interleaved, there is a symmetric relationship between states one to four, and states five to eight, therefore only a description of states one through four will be offered. Fig. 3 shows the key waveforms of the converter over one full switching period. For convenience of analysis, the voltages across the leakage inductances Llk1, Llk3 will be defined as vlk1, vlk3.





Fig. 4 Operating states over one cycle: (a) state 1; (b) state 2; (c) state 3; (d) state 4; (e) state 5; (f) state 6; (g) state 7; (h) state 8.

#### 3.1 Operating States

- State 1:  $[t_0 \le t \le t_1]$ : As shown in Fig. 4(a), switch S1 begins conducting, and switch  $S_2$  is already on. In this interval, the input voltage  $V_{in}$  runs across  $L_{m1}$ ,  $L_{m2}$ ,  $L_{lk1}$ , and  $L_{lk3}$ , magnetizing  $L_{m1}$ ,  $L_{m2}$ ,  $L_{lk1}$  and  $L_{lk3}$ . At the same time, due to the demagnetization of the energy stored in the leakage inductance  $L_{lk2}$ , the leakage inductance  $L_{lk2}$  energy will continue to charge the energy-transferring capacitor  $C_1$ . This forces the diode  $D_1$  to continue conducting such that the secondary side-leakage inductance energy can be recovered. Once the energy stored in  $L_{lk2}$  is fully released, current  $i_{D1}$  drops to zero and this state ends at  $t = t_1$ . Note that as diode  $D_2$  is reverse-biased, only the output capacitor  $C_o$  releases energy to the load.
- State 2:  $[t_1 \le t \le t_2]$ : Following Fig. 4(b), the switches  $S_1$  and  $S_2$  remain on. The input voltage  $V_{in}$  still runs across  $L_{m1}$ ,  $L_{m2}$ ,  $L_{lk1}$  and  $L_{lk3}$ , continuing the magnetized state of  $L_{m1}$ ,  $L_{m2}$ ,

 $L_{lk1}$  and  $L_{lk3}$ . The energy at leakage inductance  $L_{lk2}$  is released entirely. Diode  $D_1$  is reverse-biased and the voltage across it equals  $V_{D1}$ . Output capacitor  $C_o$  is still releasing energy to the load. This state ends at  $t = t_2$ .

- State 3:  $[t_2 \le t \le t_3]$ : Fig. 4(c) shows the state where switch  $S_1$  is still active, and switch  $S_2$  starts switching off. In this interval, the input voltage  $V_{in}$  still runs across  $L_{m1}$  and  $L_{lk1}$ , and the inductances  $L_{m1}$  and  $L_{lk1}$  remain magnetized. Simultaneously, the inductances  $L_{m2}$  and  $L_{lk3}$  become demagnetized. In this state the second coupled inductor behaves like a transformer, meaning that when the switch is turned off, the coupled inductor releases energy via  $L_{m2}$ , as well as transmitting energy via a transferring current, to the secondary side. The input voltage will continue to provide energy to the primary side of the second coupled inductor. Following Kirchhoff's current law, the current  $i_{lk3}$  flowing through the leakage inductance  $L_{lk3}$  will flow to switch  $S_2$ , diode  $D_2$  and diode  $D_3$ , namely,  $i_{lk3} = i_{ds3} + i_{D2} + i_{D3}$ . Since the current  $i_{D3}$  flowing to diode  $D_3$  is transferring the current of the second coupled inductor, the energy-transferring capacitor  $C_2$  will charge. Therefore, the switch  $S_1$  will suffer from additional current stress. In addition, part of  $i_{lk3}$  flows to the body capacitor of the switch  $S_2$ , causing the voltage across the switch  $S_2$  to be  $V_{in} - v_{Lm2} - v_{lk3}$ . The remaining current across  $i_{lk3}$  flows to the load, forcing diode  $D_2$  to be forward-biased, whereupon the sum of the input voltage energy, magnetizing inductance energy, leakage inductance energy and transferring capacitor energy supply the load energy. This is the method by which recovery of the primary-side inductance leakage can be achieved. Once the energy stored in  $L_{lk3}$  is released entirely, the current at  $i_{ds2}$  drops to zero ending the state  $t = t_3$ .
- State 4:  $[t_3 \le t \le t_4]$ : In the case of Fig. 4(d), switch  $S_1$  is still off. Input voltage  $V_{in}$  still runs across  $L_{m1}$  and  $L_{lk1}$ , magnetizing  $L_{m1}$  and  $L_{lk1}$ . Magnetizing inductance  $L_{m2}$  remains demagnetized and the second coupled inductor still behaves like a transformer. Current flows to diode  $D_3$ , where  $i_{lk3} = i_{D3}$ . In this state the energy at the leakage inductance point  $L_{lk3}$  has been released entirely, the voltage across switch  $S_2$  is  $V_{in}$ -v $L_{m2}$ . Since the energy in the transferring capacitor  $C_1$  is released entirely, diode  $D_2$  is reverse-biased. In addition, the energy-transferring capacitor  $C_2$  continues to charge, such that the switch  $S_1$  continues to withstand additional current stress, and only the output capacitor releases energy to the load. This state ends when  $t = t_4$ .

As the circuit states 1 to 4 and 5 - 8 are symmetric, where Figs. 4(a) to 4(d) show states 1 - 4 where the switch *S*1 is always ON; but states 5 to 8, shown in Figs. 4(e) to 4(h) are representative of switch  $S_2$  being always ON. Thus, the operating principles for states 5-8 are not described here.

#### 3.2 Voltage Gain

In order to obtain the voltages across the energy-transferring capacitors  $C_1$ ,  $C_2$  and the voltage gain of the converter, only states 2, 3 and 7 are considered. Leakage inductances  $L_{lk1}$ ,  $L_{lk2}$ ,  $L_{lk3}$  and Llk4 are disregarded. From state 2, as shown in Fig. 4(b), the voltages  $v_{Lm1}$ ,  $v_{Lm2}$  at the magnetizing inductances Lm1 and  $L_{m2}$  can be determined by:

$$v_{Lml}^{(2)} = V_{in} \tag{1}$$

$$v_{Lm2}^{(2)} = V_{in}$$
(2)

From states 3 and 7, the following equation can be obtained:

$$v_{Lm2}^{(3)} = V_{in} + V_{C1} - V_o \tag{3}$$

$$v_{Lm1}^{(7)} = V_{in} + V_{C2} - V_o \tag{4}$$

Since  $V_{C1}$  and  $V_{C2}$  are unknown parameters, they must be replaced. As they have the same value only  $V_{C2}$  will be used for derivation in this description. By applying the volt-second balance to  $L_{m1}$ , the following equation can be obtained:

$$\int_{0}^{T_{s}} v_{Lm1} dt = V_{in} \times DT_{s} + (v_{Lm1}^{(7)}) \times (1-D)T_{s} = 0$$
<sup>(5)</sup>

Rearranging (5), the following equation is derived:

$$v_{L_{m1}}^{(7)} = \frac{-D}{1-D} V_{in}$$
(6)

Then, in state 3, based on Kirchhoff's voltage law, the voltage across capacitor  $C_2$  is:

$$V_{C2} = V_{in} - n \cdot v_{Lm1}^{(7)} - v_{Lm1}^{(7)}$$
  
=  $V_{in} + n \cdot \frac{D}{1 - D} V_{in} + \frac{D}{1 - D} V_{in}$   
=  $\frac{1 - D + nD + D}{1 - D} V_{in}$   
=  $\frac{1 + nD}{1 - D} V_{in}$  (7)

Substituting (7) into (4) yields:

$$v_{Lm1}^{(7)} = V_{in} + \frac{1+nD}{1-D}V_{in} - V_o$$
(8)

Given (1) and (8), applying the volt-second balance to magnetizing inductance Lm1 gives:

$$\int_{0}^{T_{s}} v_{Lm1} dt = V_{in} \times DT_{s}$$

$$+ \left( V_{in} + \frac{1 + nD}{1 - D} V_{in} - V_{o} \right) \times (1 - D)T_{s} = 0$$
(9)

After rearranging the above equation, the voltage gain of this converter can be obtained by the following:

$$\frac{V_o}{V_{in}} = \frac{2 + nD}{1 - D} \tag{10}$$

where

$$n = \frac{N_{s1}}{N_{p1}} = \frac{N_{s2}}{N_{p2}}$$
(11)

Following the derivation of (10), given different turns-ratios, curves for the voltage gain can be plotted against duty cycles, as in Fig. 5.



Fig. 5 Curves of voltage gain versus duty cycle for the proposed circuit.

### 3.3 Boundary conditions of the magnetizing inductance

Conditions required for the converter to operate are:

$$\begin{cases} 2I_{Lm1} \ge \Delta i_{Lm1}, \text{CCM} \\ 2I_{Lm1} < \Delta i_{Lm1}, \text{DCM} \end{cases}$$
(12)

where  $I_{Lm1}$  and  $\Delta i_{Lm1}$  are DC components and AC components, respectively.

For convenience of analysis, only the magnetizing inductance  $L_{m1}$  will be analyzed here. Input power is assumed to be equal to output power. Given that the volt-seconds balance and the ampere-seconds balance, DC voltage on the magnetizing inductance and DC currents at  $C_1$ ,  $C_2$  and  $C_o$  are all zero; therefore, in Figs. 6 and 7, the DC component at  $i_{Ns1}$  ( $I_{Ns1}$ ) is equal to the DC current  $I_{D1}$  flowing through diode  $D_1$ , or the output current Io. Also, according to Kirchhoff's current law, the DC component at  $i_{Lm}$  ( $I_{Lm1}$ ,) is equal to the value of the DC component of the current  $i_{Np1}$  ( $I_{Np1}$ ), plus half of the DC component  $i_{in}$  ( $I_{in}$ ). Therefore,  $I_{Lm1}$  can be described mathematically by the following:

$$I_{in} = \frac{2 + nD}{1 - D} \times I_o \tag{13}$$

$$I_{Np1} = \frac{N_{s1}}{N_{p1}} \times I_{Ns1} = \frac{N_{s1}}{N_{p1}} \times I_{D1} = \frac{N_{s1}}{N_{p1}} \times \frac{I_o}{2}$$
(14)

$$I_{Lm1} = 0.5 \times I_{in} + I_{Np1}$$
  
=  $\frac{1}{2} \times \frac{2 + nD}{1 - D} \times I_o + n \times \frac{I_o}{2} = \frac{2 + n}{1 - D} \times \frac{I_o}{2}$  (15)



Fig. 6 Labeled area used to explain the  $I_{Np1}$  and  $I_{Lm1}$  of the proposed converter.



Fig. 7 Equivalent DC analysis of the first coupled inductor.

In Fig. 7,  $I_o$  can be expressed as  $V_o/R_o$ , which can then be substituted into (15), giving the following relationship:

$$I_{Lm1} = \frac{1}{2} \times \frac{2+n}{1-D} \times \frac{V_o}{R_o}$$
(16)

Where the expression of in CCM is

$$\Delta i_{Lm1} = \frac{v_{Np1}\Delta t}{L_{m1}} = \frac{v_{Lm}^{(2)}DT_s}{L_{m1}} = \frac{V_{in}DT_s}{L_{m1}}$$
(17)

If  $2I_{Lm1} \ge \Delta i_{Lm1}$ , the magnetizing inductance Lm1 operates in CCM. Substituting (16) and (17) into (12), the following result can be obtained:

$$2I_{Lm1} \ge \Delta i_{Lm1}$$

$$\Rightarrow 2 \times \left(\frac{1}{2} \times \frac{2+n}{1-D} \times \frac{V_o}{R_o}\right) \ge \frac{V_{in} DT_s}{L_{m1}}$$

$$\Rightarrow \frac{2L_{m1}}{R_o T_s} \ge \frac{2 \times D(1-D)^2}{(2+n)(2+nD)}$$

$$\Rightarrow K_1 \ge K_{crit1}(D)$$
(18)

where  $K_1 = \frac{2L_{m1}}{R_o T_s}$  and  $K_{crit1}(D) = \frac{2 \times D(1-D)^2}{(2+n)(2+nD)}$ .

Equation (18) holds true where the turns-ratio n is equal to 3, and the duty cycle D is changed from zero to 1. As seen from Fig. 8, if  $K_1$  is greater than  $K_{crit}$ , the magnetizing inductor will operate in CCM; otherwise, the magnetizing inductor will operate in DCM.



Fig. 8 Boundary conditions for the first magnetizing inductor.

It follows that the procedure for deriving the boundary conditions of the second magnetizing inductor are almost the same as for the first.

# 4. CONTROL METHODS AND DESIGN CON-SIDERATIONS

Figure 9 shows the system block diagram. First, based on the voltage divider, the output voltage is determined, then this value is passed to the analog-to-digital converter (ADC) inside the digital signal processor (DSP). The ADC is used to convert the analog signal to its corresponding digital signal. This digital signal is then sent to the proportional-integral (PI) controller, which is written in the DSP internal interrupt subroutine. This in turn uses an internal enhanced pulse width modulation (EPWM) generator to send out the processed signal, the digital control force signal. Finally, the DSP transmits this digital signal to the switch after the gate driver, to prevent the switch not being fully activated. The relevant system specifications and component names used in the prototype converter are shown in Tables 1 and 5, respectively.



Fig. 9 System block diagram of the proposed converter.

Table 1 System specifications

| Specifications                                                    | Parameters   |
|-------------------------------------------------------------------|--------------|
| Input voltage $(V_{in})$                                          | 38 V         |
| Rated output voltage $(V_o)$                                      | 400 V        |
| Rated output current $(I_{o, rated})$ /power $(P_{o, rated})$     | 1 A / 400 W  |
| Minimum output current $(I_{a, min}) / \text{power} (P_{a, min})$ | 0.1 A / 40 W |
| Switching frequency $(f_s)$                                       | 100 kHz      |

### 4.1 Design of the Magnetizing Inductance of the First Coupled Inductor

It can be determined from (18) that if the magnetizing inductance of the first coupled inductor is always operating in CCM, the value of the magnetizing inductance  $L_{m1}$  must satisfy the following inequality:

$$L_{m1} \ge \frac{2 \times D(1-D)^2}{(2+n)(2+nD)} \times \frac{R_{o,max} T_s}{2}$$

$$\Rightarrow L_{m1} \ge \frac{2 \times D(1-D)^2}{(2+n)(2+nD)} \times \frac{V_o}{I_{o_{min}}} \times \frac{T_s}{2}$$
(19)

In (19),  $R_{o, max}$  is the maximum load resistance under light loads, and  $I_{o, min}$  is the minimum load current under light loads.

By substituting these system specifications into (19), it is possible to derive the value range for  $L_{m1}$ :

$$L_{m1} \ge \frac{2 \times D(1-D)^2}{(2+n)(2+nD)} \times \frac{V_o}{I_{o_min}} \times \frac{T_s}{2}$$
  

$$\Rightarrow L_{m1} \ge \frac{2 \times 0.63 \times (1-0.63)^2}{(2+3)(2+3\times 0.63)} \times \frac{400}{0.1} \times \frac{10\mu}{2}$$
  

$$\Rightarrow L_{m1} \ge 180.51 \,\mu\text{H}$$
(20)

In this case, the value of 196.26  $\mu$ H was selected for  $L_{m1}$ , which means it is also the same value for  $L_{m2}$ .

#### 4.2 Selection of Coupled Inductor Core

According to Faraday's law, the number of turns of the first coupled inductor's primary winding,  $N_{p1}$ , is:

$$N_{p1} = \frac{L_{m1}I_{Lm1\_peak}}{A_e B_{max}} \times 10^8$$
(21)

where  $A_e$  is the effective cross-sectional area of the core, and  $B_{max}$  is the maximum effective magnetic flux density. In addition, as the core rises in temperature, its saturation magnetic flux density  $(B_s)$  decreases, making it easier for the core to enter the saturation region, causing short-circuits between components. Therefore, the value of  $B_{max}$  is intentionally limited to an 80% threshold of  $B_s$ . For this prototype a high-magnetic permeability iron manufactured by TDK Corporation was used (PC47ETD39/20/13-Z), details are listed in Table 2.

Table 2 PC47ETD39/20/13-Z core specifications

| Core type                                 | PC47ETD39/20/13-Z    |
|-------------------------------------------|----------------------|
| Inductance coefficient $(A_L)$            | $3150\pm25\%$        |
| Saturation flux density $(B_s)$           | 4200 G               |
| Residual magnetic flux density $(B_r)$    | 600 G                |
| Effective cross-sectional area $(A_e)$    | $1.25 \text{ cm}^2$  |
| Effective volume $(V_e)$                  | 11.5 cm <sup>3</sup> |
| Magnetic circuit effective length $(l_e)$ | 9.21 cm              |

Substituting the obtained value of  $L_{m1}$ , here 196.26 µH, and the specifications listed in Tables 1 and 2 into equation (21), the number of turns on the primary side,  $N_{p1}$ , are:

$$N_{p1} = \frac{L_{m1}I_{Lm1\_peak}}{A_e B_{max}} \times 10^8$$

$$= \frac{196.26 \,\mu \times 7.377}{1.25 \times (4200 \times 0.8)} \times 10^8 = 34.47 \,\mathrm{Turns}$$
(22)

Therefore the value for  $N_{p1}$  is 35, and the number of turns on the secondary side,  $N_{s1}$ , is 105, since the turns-ratio n = 3.

#### 4.3 Air Gap of the Used Core

With the value of  $N_{p1}$  selected and the inductance coefficient  $A_L$  of the selected core substituted into (23), the value of the corresponding magnetizing inductance  $\tilde{L}_{m1}$  can be obtained. This value is much greater than was required for the design:

$$\tilde{L}_{m1} = N_{p1}^2 \times A_L = 35^2 \times 3150 \times 10^{-9} = 3.859 \text{ mH}$$
(23)

Therefore, an air gap  $l_a$  must be inserted into the core to tune  $A_L$  to the desired value. First, the required inductance coefficient is calculated:

$$\widetilde{A}_{L} = \frac{L_{m1}}{N_{p1}^{2}} = \frac{196.32 \,\mu}{35^{2}} = 160.261 \,\mathrm{nH/N}^{2}$$
(24)

Followed by the equivalent reluctance, after the air gap is added,  $R_{eq} = R_a + R_e$ , where  $R_a$  is the air-gap reluctance.  $R_{eq}$  is expressed by (25), and  $R_e$  is expressed by (26).

$$R_{eq} = \frac{1}{\tilde{A}_L} = \frac{1}{160.261 \times 10^{-9}} = 6.24 \times 10^6 \,\mathrm{A \cdot Turns / Wb}$$
(25)

$$R_e = \frac{1}{A_L} = \frac{1}{3150 \times 10^{-9}} = 0.317 \times 10^6 \,\mathrm{A \cdot Turns / Wb}$$
(26)

Hence, the air-gap reluctance  $R_a$  can be determined as follows:

$$R_{eq} = R_a + R_e \Longrightarrow R_a = R_{eq} - R_e$$

$$\Rightarrow R_a = 6.24 \times 10^6 - 0.317 \times 10^6$$

$$\Rightarrow R_a = 5.923 \times 10^6 \text{ A} \cdot \text{Turns / Wb}$$
(27)

By substituting (27) and the core specifications shown in Table 2 into the magnetoresistance equation, the air gap  $l_a$  can be derived by:

$$l_a = R_a \times \mu_0 \times \mu_r \times A_e$$
  
= 5.923×10<sup>6</sup> × 4π×10<sup>-8</sup> ×1×1.25  
= 0.93 mm

Finally, the value of  $l_a$  is determined to be about 0.93 mm.

The following section measures the coupled inductor design using an LCR meter at 100 kHz, and results are shown in Tables 3 and 4.

 Table 3
 Measurements for the first coupled inductor

| Number of primary-side turns $N_{p2}$                                           | 35 Turns  |
|---------------------------------------------------------------------------------|-----------|
| Number of secondary-side turns $N_{s2}$                                         | 105 Turns |
| Primary-side inductance $L_{Np1_open}$ under the secondary-side open circuit    | 196.42 µH |
| Primary-side inductance $L_{Np1\_short}$ under the secondary-side short circuit | 0.45 μΗ   |
| Secondary-side inductance $L_{Ns1\_open}$ under the primary side open circuit   | 1.84 mH   |
| Secondary-side inductance $L_{Ns1\_short}$ under primary-side short circuit     | 7.6 µH    |
|                                                                                 |           |

Table 4 Measurements for the second coupled inductor

| Number of primary-side turns $N_{p2}$                                           | 35 Turns  |
|---------------------------------------------------------------------------------|-----------|
| Number of secondary-side turns $N_{s2}$                                         | 105 Turns |
| Primary-side inductance $L_{Np2\_open}$ under the secondary-side open circuit   | 198.42 µH |
| Primary-side inductance $L_{Np2\_short}$ under the secondary-side short circuit | 0.41 µH   |
| Secondary-side inductance $L_{Ns2\_open}$ under the primary side open circuit   | 1.94 mH   |
| Secondary-side inductance $L_{Ns2\_short}$ under primary-side short circuit     | 8.7 μH    |

By substituting the values measured in Table 3 into (29), the value of the coupling coefficient k, of the primary side to the secondary side, can be obtained:

$$k_{1} = \sqrt{1 - \frac{L_{Np1\_short}}{L_{Np1\_open}}} \cong 0.99885$$
(29)

By substituting the values measured in Table 3 into (30), the value of the coupling coefficient k with the secondary side relative to the primary side can be obtained:

$$k_{2} = \sqrt{1 - \frac{L_{Ns1\_short}}{L_{Ns1\_open}}} \cong 0.99793$$
(30)

By substituting the results of (29) and (30) into the geometric mean equation, the common coupling coefficient kcomm can be obtained:

$$k_{comm} = \sqrt{k_1 k_2} \cong 0.99839 \tag{31}$$

Then, the obtained kcomm and some measured values in Table 3 are substituted into equations (32) and (33). From this the primary leakage inductance  $L_{lk1}$  and secondary leakage inductance  $L_{lk2}$  of the first coupled inductor can be obtained:

$$L_{lk1} = (1 - k_{comm}) L_{Np1\_open}$$
  
= (1 - 0.99839)×196.42µ = 0.316 µH (32)

$$L_{lk2} = (1 - k_{comm}) L_{Ns1\_open}$$
  
= (1 - 0.99839)×1.84 m = 2.96 µH (33)

Therefore, the values of  $L_{lk1}$  and  $L_{lk2}$  are 0.316 µH and 2.96 µH, respectively. By the same way, the values of  $L_{lk3}$  and  $L_{lk4}$  are 0.331 µH and 3.156 µH.

# 4.4 Design of Energy-Transferring Capacitor C<sub>1</sub> and C<sub>2</sub>

As a result of the above analysis, it can be seen that capacitor  $C_2$  does not operate when switch  $S_1$  is on, and it is only charged/discharged in the interval when switch  $S_1$  is off. In the interval  $D_a$ , capacitor  $C_2$  continues to discharge until the energy release is completed, so that the current  $i_{C2}$  rises from the negative current to the zero current. Therefore, the width of the duty cycle when current  $i_{C2}$  rises from the negative to zero, can be found by the slope equation y = ax + b. This width can be expressed as follows:

$$D_a = 0.136$$
 (34)

Therefore, the constant value  $I_{C2(Da)}$ , corresponding to the current  $i_{C2}$  during the discharge period, can be obtained by:

$$I_{C2(Da)} = \frac{I_{Lm1\_peak}}{2} = \frac{7.377}{2} = 3.689A$$
(35)

Also, since Tables 1 and 5 show the voltage stresses on  $C_1$  and  $C_2$  are the same, here referred to as  $V_{C1}$  and  $V_{C2}$ , respectively,  $V_{C1}$  and  $V_{C2}$  can be calculated by:

$$V_{C1} = V_{C2} = \frac{1+nD}{1-D}V_{in}$$
  
=  $\frac{1+3 \times 0.63}{1-0.63} \times 38$   
= 296.81V (36)

Based on (34), (35), (36) and Tables 1 and 5, the maximum voltage ripple on  $C_2$  is set within 0.1% of  $V_{C2}$ , thus the value of  $C_2$  is:

$$C_{2} \geq \frac{I_{C2(Da)} D_{a} T_{s}}{\Delta v_{C2}}$$
$$\Rightarrow C_{2} \geq \frac{0.136 \times 3.689 \times 10 \,\mu}{2 \times 0.001 \times 296.81} = 8.452 \,\mu\text{F}$$
(37)

Hence, one 22  $\mu$ F/450V Rubycon electrolytic capacitor is used for  $C_2$ , and also for  $C_1$ .

Table 5 components used in the converter

| Component                | Specification                                                                                                                        |
|--------------------------|--------------------------------------------------------------------------------------------------------------------------------------|
| MOSFET switch $S_1, S_2$ | IRFB4227PBF                                                                                                                          |
| Diode $D_1, D_3$         | ISL9R860P2                                                                                                                           |
| $D_2, D_4$               | GMR10H200C                                                                                                                           |
| Capacitor $C_1, C_2$     | 22 µF/450V                                                                                                                           |
| Output capacitor         | $C_o$ 180 $\mu$ F/450V                                                                                                               |
| Coupled Inductor 1       | Core: ETD39/20/13-Z<br>$n = 3, L_{m1} = 196.26 \mu$ H,<br>$L_{lk1} = 0.32 \mu$ H, $L_{lk2} = 2.96 \mu$ H                             |
| Coupled Inductor 2       | Core: ETD39/20/13-Z<br>$n = 3, L_{m1} = 196.26 \mu$ H,<br>$L_{lk3} = 0.33 \mu$ H, $L_{lk4} = 3.16 \mu$ H,<br>$L_{m2} = 198.42 \mu$ H |

### 5. EXPERIMENTAL RESULTS

In order to verify the feasibility of the proposed converter, the waveforms from Figs. 10 to 19 were measured under the rated load conditions.

As seen from Fig. 10, there is a voltage surge across the  $v_{ds1}$  and  $v_{ds2}$  on the main switches  $S_1$  and  $S_2$ . The main reason for this is that when the main switches  $S_1$  and  $S_2$  are turned off, the primary-side leakage inductances  $L_{lk1}$  and  $L_{lk3}$  of the two coupled inductors transfer energy to the load through the energy-transferring capacitors  $C_1$  and  $C_2$ , respectively. In addition, if the energy stored in  $C_1$  and  $C_2$  has fully discharged, but the primary-side leakage inductance energy has not, then the remaining energy in the primary-side leakage inductance charges at  $C_1$  and  $C_2$  through the diodes  $D_1$  and  $D_2$ , respectively. This is the aspect of the design that enables energy leakage recovery. Thus, voltage surges on the main switches  $S_1$  and  $S_2$  can also be reduced. Note, however, that as load increases, increases in the energy stored in the primary-side leakage inductance will cause a portion of the leakage inductance energy to charge the parasitic capacitance of the main switch, causing a high-frequency oscillating voltage on the switch.

As seen from Fig. 11, the currents  $i_{ds1}$  (or  $i_{ds2}$ ) flowing through the main switches  $S_1$  (or  $S_2$ ) have high-frequency current oscillations. The main reason for this is that when both main switches are turned on in state 1 (or 5), the energy stored in the secondary-side leakage inductance  $L_{lk2}$  (or  $L_{lk4}$ ) will be released. Whereupon the energy-release path leads to the main switches  $S_1$  and  $S_2$ . Therefore, at this time, the leakage inductance can be connected in series with the energy- transfer capacitor  $C_1$  (or  $C_2$ ) generating a high-frequency oscillating current. When the energy stored in the leakage inductance reaches zero, diode  $D_1$  (or  $D_3$ ) create a reverse recovery current. Therefore, at this time, the leakage inductance  $L_{lk2}$  (or  $L_{lk4}$ ) will oscillate with the energy-transferring capacitor  $C_1$  (or  $C_2$ ) connected in series with the parasitic capacitance of the diode  $D_1$  (or  $D_3$ ). By doing so, a high-frequency oscillating current on the primary side of the first (or second) coupled inductor is induced. This current will then flow to the main switch  $S_1$  (or  $S_2$ ). That is,  $i_{ds1} =$  $i_{Lm1}-i_{Np1}-i_{D1} = i_{Lm1}-(n + 1)i_{D1}$ , such that the high-frequency oscillating current on the primary side will be (n + 1) times that of the secondary side. On the other hand, when switch S1 is on, and switch  $S_2$  is off, the current ids1 flowing through the main switch  $S_1$  is equal to  $i_{Lm1} + i_{D3}$ , and the current  $i_{D3}$  becomes the charging current for  $C_2$ . At the same time, current  $i_{D3}$  will increase as the load increases, so its proportion as part of the current  $i_{ds1}$  gradually increases. This will make the current in the switch appear as a bump, where the current in  $i_{D3}$  is the additional current stress that the switch needs to withstand.

As shown in Fig. 12, the primary-side leakage inductance current  $i_{lk1}$  of the first coupled inductors, and the primary-side leakage inductance current  $i_{lk3}$  of the second coupled inductors, have high-frequency oscillating currents, and at the interval in which the two switches are turned on, these currents are mainly the same as the current flowing through the switches. These are referred to as  $i_{ds1}$  and  $i_{ds2}$  and they flow through the main switches  $S_1$  and  $S_2$ . In state 4, when switch S1 is on and switch  $S_2$  is off; or in state 8, when switch S1 is off and switch  $S_2$  is on, the magnetizing inductance  $L_{m1}$  (or  $L_{m2}$ ) is demagnetized and charges the energy-transferring capacitors  $C_1$  or  $C_2$ , respectively.

Note that the currents  $i_{Lm1}$  or  $i_{Lm2}$  have (n + 1) times the current of the secondary-side currents  $i_{D1}$  or  $i_{D3}$ . Thus the currents  $i_{D1}$  and  $i_{D3}$  will be equal to the leakage inductance currents  $i_{lk1}$  and  $i_{lk3}$ , respectively. Current  $i_{lk3}$  is such that when one switch is turned on and the other off, the primary-side leakage current has a change of (1 + n).

Figure 13 shows that the voltages across  $V_{D1}$  at diode  $D_1$ , and the voltage across diode  $D_2$ , exhibit voltage spikes. This phenomenon arises as a result of the secondary-side leakage inductances  $L_{lk2}$  and  $L_{lk4}$  as they resonate with the parasitic capacitances of the diodes  $D_1$  and  $D_2$ . Additionally, since diode  $D_1$  uses a fast diode with a rated voltage of 600V, its reverse recovery current will be larger than that of the Schottky diode, meaning that the voltage  $V_{D1}$  will exhibit a greater voltage spike. Also, diode  $D_2$  exhibits a voltage spike in the cut-off instant, meaning that the remaining voltage oscillations in the cut-off interval are affected by diode  $D_1$ . Since diodes  $D_3$ ,  $D_4$  in Fig. 13 and diodes  $D_1$  and  $D_2$  in Fig. 15 are complementary, the operational principles are the same, therefore no further description is made.

As can be seen from Fig. 14, the current  $i_{D1}$  through diode  $D_1$  is a current for charging the energy-transferring capacitor  $C_1$ , whereas the current  $i_{D2}$  flowing through diode  $D_2$  is a current for discharging the energy-transferring capacitor  $C_1$ . The oscillating current generated in the interval where both switches are turned on arises in state 1. When  $S_1$  is turned on and switch  $S_2$  is turned off, the voltage across the energy-transferring capacitor  $C_2$ , the input voltage  $V_{in}$ , the voltage  $-v_{lk3}$ , and the voltage across the excitation inductor  $L_{m2}$  are all connected in series and supply energy to load. Hence, at this moment, the energy stored in  $L_{lk3}$  will be instantaneously released, inducing a current spike at  $i_{D2}$ . This spike will also increase as load increases. Since diodes  $D_3$  and  $D_4$  in Figs. 14, and diodes  $D_1$  and  $D_2$  in Fig.16 are complementary, the operational principles are the same, therefore no further description is made.

Figure 17 shows that the voltage across the energy-transferring capacitor  $C_1$  and the voltage across the energy-transferring capacitor  $C_2$  are both stable.

In Fig. 18, current  $i_{C1}$  flows through the energy-transferring capacitor  $C_1$ , current  $i_{C2}$  flows through the energy-transferring capacitor  $C_2$ , and the currents  $i_{D1}$  and  $i_{D3}$  flow through the diodes  $D_1$  and  $D_3$ . That is, the currents for charging the energy-transferring capacitors  $C_1$  and  $C_2$ , are the currents  $i_{D1}$  and  $i_{D3}$  flowing through the diodes  $D_1$  and  $D_3$ ; the currents for discharging the energy-transferring capacitors  $C_1$  and  $D_3$ ; the currents for discharging the energy-transferring capacitors  $C_1$  and  $D_2$  are the currents  $i_{D2}$  and  $i_{D4}$  flowing through the diodes  $D_2$  and  $D_4$ .

Figure 19 shows the current io1 synthesized by the rising currents  $i_{D2}$  and  $i_{D4}$  that flow through diodes  $D_2$  and  $D_4$ . Note that the period of current *io*1 will be 1/2 that of the switching period, so its frequency will be twice the switching frequency. Therefore, when designing the output capacitor  $C_o$ , a smaller output capacitance can be used.

Figure 20 presents a curve of efficiency versus load current. It can be seen that efficiency over the full load range is greater than 91.17%, the rated-load efficiency is about 94.03%, and maximum efficiency can be as high as 94.52%. Fig. 21 is a photograph of the prototype converter.



Fig. 10 Measured waveforms at rated load: (1)  $v_{gs1}$ ; (2)  $v_{gs2}$ ; (3)  $v_{ds1}$ ; (4)  $v_{ds2}$ .



Fig. 11 Measurement waveforms at rated load: (1)  $v_{gs1}$ ; (2)  $v_{gs2}$ ; (3)  $i_{ds1}$ ; (4)  $i_{ds2}$ .



Fig. 12 Measurement waveforms at rated load: (1)  $v_{gs1}$ ; (2)  $v_{gs2}$ ; (3)  $i_{lk1}$ ; (4)  $i_{lk3}$ .



Fig. 13 Measurement waveforms at rated load: (1)  $v_{gs1}$ ; (2)  $v_{gs2}$ ; (3)  $v_{D1}$ ; (4)  $v_{D2}$ .



Fig. 14 Measured waveform at rated load: (1)  $v_{gs1}$ ; (2)  $v_{gs2}$ ; (3)  $i_{D1}$ ; (4)  $i_{D2}$ .



Fig. 15 Measured waveforms at rated load: (1)  $v_{gs1}$ ; (2)  $v_{gs2}$ ; (3)  $v_{D3}$ ; (4)  $v_{D4}$ .







Fig. 17 Measured waveforms at rated load: (1)  $v_{gs1}$ ; (2)  $v_{gs2}$ ; (3)  $V_{C1}$ ; (4)  $V_{C2}$ .



Fig. 18 Measurement waveforms at rated load: (1)  $v_{gs1}$ ; (2)  $v_{gs2}$ ; (3)  $i_{C1}$ ; (4)  $i_{C2}$ .



Fig. 19 Measurement waveform at rated load: (1)  $v_{gs1}$ ; (2)  $v_{gs2}$ ; (3)  $i_{o1}$ ; (4)  $V_o$ .

![](_page_10_Figure_9.jpeg)

Fig. 20 Curve of efficiency versus load current percentage.

![](_page_10_Picture_11.jpeg)

Fig. 21 Photo of the prototype of the proposed circuit.

# 6. CONCLUSION

This paper proposed and examined an interleaved high-boost converter with improved voltage gain and recovered leakage inductance energy. The voltage gain was derived/obtained using coupled inductors and energy-transferring capacitors that could be adjusted by means of the duty cycle and turns-ratio. The leakage inductance energy of the coupled inductor was made recoverable, such that the voltage spikes on the main switches were quite small. This converter was easy to drive and would be suitable for industrial applications.

# REFERENCES

- Boico, F., Lehman, B., and Shujaee, K. (2007). "Solar battery chargers for NiMH batteries," *IEEE Transactions on Power Electronics*, 26(5), 1600-1609.
- Dwari, S. and Parsa, L. (2011). "An efficient high-step-up interleaved DC-DC converter with a common active clamp," *IEEE Transactions on Power Electronics*, **26**(1), 66-78.
- Gules, R., Pfitscher, L.L., and Franco, L. C. (2003). "An interleaved boost DC-DC converter with large conversion ratio," *IEEE ISIE'03*, 1, 411-416.
- Hosseini, S.H., Babaei, E., and Nouri, T. (2014). "An interleaved high step-up DC-DC converter with reduced voltage stress across semiconductors," *IEEE CCECE'14*, 1-6.
- Hu, X. and Gong, C. (2015). "A high gain input-parallel output-series DC/DC converter with dual coupled inductors," *IEEE Transactions on Power Electronics*, **30**(3), 1306-1317.
- Lai, C.M., Pan, C.T., and Cheng, M.C. (2012). "High-efficiency modular high step-up interleaved boost converter for DC-microgrid applications," *IEEE Transactions on Industry Applications*, 48(1), 161-171.
- Li, W. and He, X. (2011). "Review of nonisolated high-step-up DC/DC converters in photovoltaic grid-connected applications," *IEEE Transactions on Industrial Electronics*, 58(4), 1239-1250.
- Li, W., Li, W., He, X., Xu, D., and Wu, Bin. (2012). "General derivation law of nonisolated high-step-up interleaved converters with built-in transformer," *IEEE Transactions on Industrial Electronics*, 59(3), 1650-1661.
- Li, W., Lv, X., Deng, Y., Liu J. and He, X. (2009). "A review of non-isolated high step-up dc/dc converters in renewable energy applications," *IEEE APEC'09*, 364-369.
- Liang, X., Zhao, J., Xia, M., and Qu, K. (2013). "Novel high step up boost converter with charge pump capacitor," *IEEE IN-TELEC'13*, 1-6.
- Lin, T.J., Chen, J.F., and Hsieh, Y.P. (2013). "A novel high step-up DC-DC converter with coupled-inductor," *IEEE IFEEC'13*, 777-782.

- Pan, C.T., Chuang, C.F., and Cheng, H.C. (2016). "A novel transformer-less interleaved four-phase step-down DC converter with low switch voltage stress and automatic uniform current sharing characteristics," *IEEE Transactions on Power Electronics*, **31**(1), 406-417.
- Pan, C.T., Chuang, C.F., and Chu, C.C. (2013). "A transformer-less interleaved four-phase current-fed converter with new voltage multiplier topology," IEEE IFEEC'13, 187-193.
- Pan, C.T., Chuang, C.F., and Chu, C.C. (2014). "A novel transformer-less adaptable voltage quadrupler DC converter with low switch voltage stress," *IEEE Transactions on Power Electronics*, 29(9), 4787-4796.
- Pan, C.T. and Lai, C.M. (2010). "A high-efficiency high step-up converter with low switch voltage stress for fuel-cell system applications," *IEEE Transactions on Industrial Electronics*, 57(6), 1998-2006.
- Park, K.B., Moon, G.W., and Youn, M.J. (2011). "Nonisolated high step-up stacked converter based on boost-integrated isolated converter," *IEEE Transactions on Power Electronics*, 26(2), 577-587.
- Silveira, G.C., Bezerra, L.D.S., Torrico-Bascope, R.P., and Tofoli, F.L. (2014). "A nonisolated DC-DC boost converter with high voltage gain and balanced output voltage," *IEEE Transactions* on *Industrial Electronics*, 61(12), 6739-6746.
- Tang, Y., Wang, T., and Fu, D. (2015). "Multicell switched-inductor switched-capacitor combined active-network converters," *IEEE Transactions on Power Electronics*, **30**(4), 2063-2072.
- Tseng, K.C., Chen, J.Z., Lin, J.T., Huang, C.C., and Yen, T.H. (2015). "High step-up interleaved forward-flyback boost converter with three-winding coupled inductors," *IEEE Transactions on Power Electronics*, **30**(9), 4696-4703.
- Tseng, K.C. and Huang, C.C. (2014). "High step-up high-efficiency interleaved converter with voltage multiplier module for renewable energy system," *IEEE Transactions on Industrial Electronics*, **61**(3), 1311-1319.
- Tseng, K.C., Lin, J.T., and Huang, C.C. (2015). "High step-up converter with three-winding coupled inductor for fuel cell energy source applications," *IEEE Transactions on Power Electronics*, 30(2), 574-581.
- Wai, R.J. and Duan, R.Y. (2005). "High-efficiency power conversion for low power fuel cell generation system," *IEEE Transactions* on Power Electronics, 20(4), 847-856.
- Young C.M., Wu, S.F., Chen, M.H., and Chen, S.J. (2014). "Single-phase ac to high-voltage dc converter with soft-switching and diode-capacitor voltage multiplier," *IET Power Electronics*, 7(7), 704-1713.
- Zheng, Y., Xie, W., and Smedley, K.M. (2019). "Multiphase interleaved high step-up converters," *IEEE APEC'19*, 1295-1300.