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ABSTRACT 

 Multiphase flows especially Newtonian fluids are extremely widespread in the chemical, biological, petroleum, and polymer 
processing sectors. Thus, the rise/fall and deformation properties of droplets in immiscible continuous phase solutions are required 
for the design of multiphase flow equipment. Among the various hydrodynamic properties, drag coefficient plays a vital role in 
designing contacting equipment. In the present study, the rheological aspects of settling and deforming both spherical and non-
spherical droplets in stagnant air were analyzed through computational fluid dynamics solver COMSOL Multiphysics 4.3. Further, 
continuous phase was selected as Newtonian medium (air) and the dispersed droplet phase consisting of Newtonian fluids (water). 
Volume fraction images of spherical and spheroid droplets demonstrate substantial distortion in the initial stages, with the 
tendency to deform gradually decreasing as the droplet approaches the channel's bottom. The drag coefficient of a moving droplet 
is determined in relation to time in order to comprehend the deformed Newtonian droplets' settling velocity behavior. Additionally, 
the volume fraction contours, pressure contours, and drag distributions of settling droplets are presented in detail to indicate the 
mixing behavior. 
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1. INTRODUCTION

The rheology of emulsions (where one fluid is dispersed into
another) and transport phenomena, droplet deformation, and 
terminal velocity are critical considerations in chemical process 
engineering industries. The rise or fall of droplets in rheological 
simple and complex fluids is also crucial in dealing with the 
hydrodynamics of fermenters, mixing, and separation processes. 
Further, equipment's physical properties cannot be predicted 
unless the interactions between irregular particles and the 
surrounding fluids are clearly known. Gas-liquid reactors with 
unsteady, scattered gas flows have been modeled numerically 
using Euler/Euler and Euler/Lagrange methods developed over 
the last decade (Gollakota and Kishore, 2017). In both of these 
methods, the source term is the sum of all the forces between the 
two phases. This source term is used to account for the movement 
of momentum between the two phases. Numerous studies have 
been conducted under the assumption that droplets are spherical, 
which is true for small droplets but not true for bigger droplets. 
While treating an irregular body computationally using a 
conventional Cartesian, cylindrical polar, or spherical polar 
coordinate system is more difficult, numerical procedures for 
solving the full Navier-Stokes equation on non-orthogonal 
boundary fitted coordinates have been practiced for several 
decades (Gollakota and Kishore, 2015). Modern computers are 
capable of solving the whole Navier-Stokes equation, allowing 

for numerical simulations of separated flows past non-spherical 
objects. Masliyah and Epstein (1971), for instance, conducted a 
numerical investigation of flow past a hard spheroid. The Navier-
Stokes equation is translated into a vorticity-stream function 
formulation based on spheroidal coordinates to correspond to the 
spheroid boundary condition and then discretized using the finite 
difference approach in their study. There has been considerable 
research on the rise and fall of liquid drops in Newtonian media, 
as well as the fall of a solid sphere in a rectangular chamber 
through Newtonian and non-Newtonian fluids (Wanchoo et al., 
2003; Astarita & Appuzzo, 1965; Calderbank et al., 1970; 
Acharya et al., 1977; Acharya et al., 1978). Taylor and Acrivos, 
(1964) investigated the deformation of a non-buoyant slender 
droplet embedded in a simple extensional flow of a Newtonian 
liquid and discovered that the droplet achieves a parabolic shape 
with pointed ends. According to Garner and Hammerton, (1954), 
distortion and oscillation of the drop will affect the drag 
coefficient, which will cause the terminal velocity across the rigid 
sphere of equal volume to decrease. Using this equation 
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r 
 Hermann was able to figure out the final velocities of

water droplets. The equation says that where is the settling 
velocity, r is the radius of a spherical drop with the same mass as 
the actual drop, and is the air density. The coefficient is based on 
the drag coefficient of the spherical drop and its diameter. 
Through volume simulations, (Rabha & Buwa, 2010) 
investigated lift forces acting on single or multiple droplets in 
linear shear flow. They found that for a highly viscous system, 
the value of lift coefficient is linear with the horizontal Eötvös 
number, but for a low viscous system, the droplet tends to 
fluctuate values of lift coefficient, which increases with the 
droplet's diameter. However, very limited information is available 
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about the shape and deformation of Newtonian droplets of 
various shapes such as sphere, prolate spheroid, and oblate 
spheroid that lie within Newtonian domains. With advancements 
in numerical methods, which have become the most efficient 
approaches with some useful advantages for understanding the 
transport phenomena and hydrodynamics of droplets, commercial 
software based on CFD can be used to obtain information on the 
shear rate dependence of the viscosity and stress field. Thus, the 
purpose of this work is to present numerical data on the settling 
and deformation phenomena of Newtonian spherical and 
spheroidal droplets. 

2. PROBLEM STATEMENT AND 
MATHEMATICAL DESCRIPTION 

To investigate spherical deformation, oblate and prolate 
droplets are allowed to settle in a warm air chamber. Newtonian 
droplets are water and air. Table 1 shows the fluid characteristics. 
The droplet is 0.1 times the chamber's width. As illustrated in 
Figure 1, the droplets fall freely from 18.5 m above the channel's 

top. The constant phase remains static. The problem is regulated 
by the phase continuity and momentum equations. continuity 
equations as follows: 

Continuity equation:  

0V   

Momentum Equation:  

 V V P        

Extra stress tensor can be written as: 

 2   

Drag coefficient:	 
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Table 1. Properties of Continuous and discontinuous phases 

Material ρ (kg/m3) n λ(s) µ0 (kg/m.s) µ∞ (kg/m.s) Simulation Time 

Newtonian 

Air 1.2 - - - - 0 - 2 Sec 

Water 1000 - - - - 0 – 2 Sec 
 

 

Fig. 1  (a) Computational domain for the spherical droplet in 
the stagnant air medium, (b) Oblate spheroid droplet in 
the stagnant air medium, (c) Prolate spheroid droplet in 
the stagnant air medium 

3. NUMERICAL METHODOLOGY 

Comsol Multiphysics 4.3 was used to solve the governing 
equations and boundary conditions. Simulating each element size 
at 0.28 m, 0.04 m, and 1.1 m takes roughly 25-30 minutes with 
fine meshing to produce good convergence and correct solutions. 
The simulations were run in the time range (0 – 2 sec) using a 
time step of 0.1 sec. The Lagrange P2P1 method is used to 

approximate the pressure values. The inputs are chosen so that 
the continuous phase density and viscosity are constant. For 
symmetric and non-symmetric systems, Comsol employs the 
PARDISO solver, which has failed to attain the needed level of 
convergence. Simulations were run at various time stages. The 
present study uses a time-dependent solver to estimate the drop's 
velocity and deformation at 0.1sec inside a channel where time is 
controlled rather than location. The grid and domain employed in 
this study are not further studied because the effects of the wall 
are not examined. Hence, the fine mesh with 12000 node points 
was selected in the present study. 

4. RESULTS AND DISCUSSION 

4.1 Validation using Comsol 4.3 

Validation of numerical solutions with existing experimental 
and/or numerical data is required for reliability and accuracy. The 
container's height and diameter are the same as Ismail, (2007). 
Ismail, (2007) investigated the problem of a submerged oil 
bubble rising in water, which is heavier than oil.  The simulation 
conditions for the validation studies were similar to the case of 
Ismail, 2007. No external force is given to the bubble, and the 
buoyancy force causes the scattered phase to migrate into the 
continuous phase. The containers' top and bottom are non-slip, 
but the vertical sides are wetted to facilitate fluid interface 
movement. Figure 2 compares the modeling results to Ismail's 
experimental results. This increases our solver's confidence and 
allows us to analyze droplet deformation without dispersion in 
stationary air. 
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Fig. 2 Comparison of Volume fraction images of Oil bubble 
rising in water observed in (Ismail, 2007) and the 
present predictions  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Fig. 3 Volume fraction of spherical and spheroidal Newtonian 
droplets settling in stagnant air  a) Spherical b) Oblate 
ellipsoid c) prolate ellipsoid 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4 Pressure Distribution of spherical and spheroidal 
Newtonian droplets settling in stagnant air  a) Spherical 
b) Oblate ellipsoid c) prolate ellipsoid  

4.2 Volume fraction studies  

Clift et al., (1978) categorized free-moving bubbles and 
drops as spherical, ellipsoidal, or spherical cap or ellipsoidal. 
Interfacial and viscous forces dominate inertial forces in spherical 
droplets and bubbles. Oblate with the convex surface, the drips 
and bubbles are ellipsoidal. Spherical or ellipsoidal cap: These 
are the largest droplets or bubbles that are flat dimpled or skirted 
at the back. When exposed to external flow fields, the drop 
deforms until normal and shear stresses balance. Larger 
deformations occur when interfacial forces exceed viscous forces, 
and undeformed when viscous forces exceed inertial forces. 
Aside from the continuous phase's physical features, restricting 
walls influence the morphology of drops, especially bubbles 
Coutanceau and Thizon, (1954). Without consideration of wall 
effects, the forms of bubbles and droplets rising or falling freely 
in a liquid medium are determined by the magnitudes of the 
dimensionless Reynolds number factors. The goal of these 
deformation studies is to demonstrate visually that the simulation 
technique accurately reproduces the gross effects of interfacial 
and hydrodynamic interactions, while quantitative data from 
experimental research are not easily available.  

The volume fraction of Newtonian droplets settling in 
stagnant air is plotted in Figure 3 as spherical (Figure 3(a)), 
oblate (Figure 3(b)), and prolate (Figure 3(c)) droplets. When a 
droplet falls freely from the channel's top (19.5 m above the 
bottom surface seen in Figure.1), the time interval required for 
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the droplet to deform is (0 - 2 sec). At t=0, the shape of the 
droplet with radius r - 0.5m is precisely spherical due to the fact 
that surface tension seeks to reduce the droplet's surface area, so 
forming a sphere. At time t = 0, the droplet is assumed to be 
stationary, with an initial velocity of zero. The droplet moves 
primarily as a result of the density differential between the 
scattered and continuous phases, as well as the downward pull of 
gravity. Unless the density difference is quite large, it is found 
that the falling droplet takes a straight route.  

Although the droplet deforms early, no significant 
deformation is detected between 0 and 2 seconds. At t = 0.5, the 
initially spherical droplet warped into an oblate shape due to the 
fact that while the droplet settles down due to gravity, opposing 
forces known as pressure forces created by the surrounding 
stagnant medium act upward and on the droplet's surface, causing 
the droplet to deform. Second, as the velocity of the falling drop 
increases, disturbances in the stagnant surrounding fluid are 
formed, which adds stress to the drop caused by the disturbances 
created during settling and causes the drop to deform. However, 
the surface tension forces at the top of the drop are negligible, 
and so the bubble's top surface remains spherical, as illustrated in 
Figure 3(a) for time increments of 2 - 4 seconds. When a little 
bubble rose in such a fluid, the typical stress acting on the 
bubble's side caused it to take on a prolate shape. Similar drop 
deformation tendencies are found in the oblate and prolate 
spheroids depicted in Figure 3(b), Figure 3(c), and Figure 3(d) (c). 

4.3 Pressure distribution studies  

The physics underlying the pressure distribution of the 
droplets are more generally addressed by examining the air and 
water systems. As illustrated in Figure.4, the only reason for the 
drop's mechanical stability is due to the surface forces between 
the fluid and the drop contact. When surface tension acts alone, it 
succeeds in molding the drop into a shape with a low surface-to-
volume ratio. The net inward pull of the molecules deeper within 
the drop increases the surface tension of the liquid, increasing the 
pressure within the drop and above the prevailing continuous 
phase outside the drop.  

The current system, as seen in Figure 4, indicates that the 
water drop is traveling at a terminal velocity, implying that it is 
being held against gravity by the vertical component of the 
pressure forces and the surface shear stresses caused by the 
upward rushing air. Similarly, the drop should have the same 
vertical pressure gradient as any mass of fluid (air) at rest in a 
gravitational field. Internal recirculation within the drop, as 
illustrated in Figure 4, can be explained as if the barrier of an air 
flow were solid. The no-slip boundary condition asserts that air is 
in contact with a reasonably still border. When a water drop falls 
in air as a continuous medium, the no-slip boundary condition 
ensures that the air surface moves slowly enough for the 
interfacial liquid to drift downstream at the same rate as the air, 
and thus these recirculations occur as a result of the shear stress 
exerted by the ambient air. Qualitatively, one can state that a very 
small amount of internal recirculation is unavoidable for the 
dynamic boundary condition due to the continuity of the 
tangential sear stresses across the water air interface, and 
additionally, because water viscosity is not infinite, some amount 
of internal motion appears certain to develop.  

4.4 Drag Coefficient and Time Graphs 

The forces acting on the droplet define its mobility and 
kinetics. The forces acting on freely and steadily descending 
particles are the particle's downward force due to its own weight. 
The normal and tangential forces act in the opposite direction to 
the particle's weight. It is well known that taking the integral over 
the normal force's surface results in the buoyancy force, which is 
independent of the particle's shape. Among the many forces, one 
that must be considered is the drag force acting on the descent. 
The drag coefficient is typically used to quantify an object's 
resistance in a fluid environment such as air or water. The motion 
of a liquid drop or a gas bubble is unlike that of a spherical 
particle of equal mass and volume. The liquid passing past the 
drop causes friction, which results in the formation of the 
droplet's circulations. Additionally, as the drop descends, forces 
caused by pressure non-uniformity act on the drop surface, 
distorting the drop's spherical shape. These forces are resisted by 
the surface tension forces, which retain the drop's spherical shape. 
The drag coefficient is derived using the equation 
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where d is the diameter of the 

droplet, g is acceleration due to gravity is the density of the 
droplet (dispersed phase), is the density of the air (continuous 
phase), and is the droplet's velocity. The eccentricities of the 
droplets are denoted by the constant e, which is determined using 
the spheroids' major and minor axes. The main and minor axes 
are defined as follows: the axis perpendicular to the flow 
direction is called the minor axis, and the axis parallel to the flow 
direction is called the major axis. The drag coefficient is plotted 
against the time relationship for Newtonian and non-Newtonian 
droplets falling freely in stagnant air functioning as a continuous 
medium in Figure.5, As the duration of settling rises, the 
corresponding terminal settling velocities of the droplets increase 
due to the droplet becoming completely free under the effect of 
gravity. As a result, the drag coefficient of the vehicle is reduced. 
In conclusion, the drag coefficient lowers as the velocity 
increases, which increases the Reynolds number; as the Reynolds 
number grows, inertial forces outweigh viscous forces, and 
therefore the drag coefficient drops. 

 

Fig. 5 Drag Coefficient Vs Time Graphs for both spherical and 
non-spherical droplets deforming in Newtonian medium 
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5. CONCLUSIONS 

In this work, different aspects of falling droplet movement 
shape of the droplet while falling, the terminal velocity of the 
droplet, and the drag coefficient of spherical, oblate spheroid, and 
prolate spheroid droplets are determined. Numerical studies cover 
droplets of different shapes and velocities at different time steps 
ranging from 0-2 sec. It is recognized that drop deformation 
occurs as a result of the viscous forces of the surrounding liquid, 
external disturbances caused by wall effects, and dimensionless 
characteristics such as the Reynolds number, weber number, and 
Bond number, among other. From the outlines of the velocity 
distribution, it is noted that the velocity steadily increases as it 
falls freely and achieves a nearly constant value before colliding 
with the channel's bottom surface. In the simulation, no separate 
inlet velocity is applied to cause the droplet to migrate. 
Additionally, it is noticed that the velocity variation with respect 
to the varied fluid characteristics appears to be approximately 
similar, as does the deformation of the various droplets. It is 
noted from the drag coefficient vs. time plots that as time passes, 
the drag coefficient reduces due to the rise in velocity, but the 
velocity abruptly decreases as it reaches the bottom surface. 
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