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ABSTRACT 

Non-Newtonian multiphase flows are almost ubiquitous in chemical, biochemical, petroleum and polymer processing 
industries. Many chemical and processing industries are plagued by bubbles, and many polymeric solutions exhibit non-
Newtonian rheological properties. A level set method is used in this study to analyze the rise and deformation of droplets in 
power-law, and Carreau model non-Newtonian fluid. This simulation is compared to previously published numerical and 
experimental data to show that the moving droplet interface is viable. The computational geometries used in these comparisons 
are the same as those reported in the respective literatures. There is good agreement between the current droplet deformation 
properties and those found in the literature. Computing fluid dynamics-based solver COMSOL Multiphysics 4.3 is used to explore 
the settling and deformation characteristics of spherical and spheroidal (oblate and prolate) droplets in stagnant air. A two-phase 
flow system is considered in which the continuous phase is Newtonian medium (air) and the dispersed droplet phase is considered 
to be both Newtonian fluids (water), Carreau fluid (Emkarox) and the power law fluid (n -0.4). Volume fraction images of 
spherical and spheroid droplets reveal substantial distortion in the early stages, which gradually decreases as the droplet 
approaches the channel's bottom. The drag coefficient of a moving droplet is calculated over time to comprehend non-Newtonian 
droplet settling velocity.  
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1. INTRODUCTION

Droplet–based microfluidics has recently found applications
in lab–on–a–chip, chemical, biological, and nanomaterial creation. 
An interesting physical phenomenon occurs when droplets 
interact with solid surfaces in a variety of technical applications 
such as spray cooling, fire suppression, drop coating for solution-
processed solar cells, droplet-based microfluidics, and spray 
cooling of conductive substrates. Non-Newtonian fluids are just 
as significant as Newtonian fluids in the design and operation of 
chemical and biochemical fermentation reactors Chabbra (2006), 
and Chabbra and Richardson (2008) stress. Taylor and Acrivos, 
(1964) studied the deformation of non-buoyant slender droplet 
embedded in the simple extensional flow of a Newtonian liquid 
and found that the droplet attains a parabolic shape with pointed 
ends. Acharya et al.  (1977, 1978) studied the deformation and 
drag of the droplet in non-Newtonian liquids at a low Reynolds 
number. They observed that the bubbles were tear-shaped at a 
very small Reynolds number and with the increase in Reynolds 
number the bubble shape tends to be spherical, oblate, and finally 
spherical capped. Further Acharya et al. (1978) developed a  
relation between the drag coefficient and Reynolds number in 

creeping flow regime as a function of power-law or Ostwald de 
waale fluids. Rust and Manga (2002) studied the effects of bubble 
deformation on the viscosity of dilute suspensions to bridge the 
gap between high and low capillary limits and to determine the 
viscosity of low Reynolds number dilute surfactant-free bubble 
suspensions where the relative viscosity is sensitive to the 
changes in shear rate. Garner and Hammerton, (1954) said that 
the distortion and oscillation of the drop will tend to change the 
drag coefficient which will make the terminal velocity decreases 
over the rigid sphere of equal volume. Mohan et al. (1972) 
reported the terminal velocity of chlorobenzene, nitrobenzene, 
dibromomethane, and orthonitrotoluene droplets in polymer 
solutions such as PAA, CMC, PEO. The study reported that small 
size droplet remains spherical but with the increase in diameter, 
the drop changes into an oblate spheroidal shape and further 
increases the diameter of the droplet, the shape further deforms to 
prolate and finally distortion of the droplet takes place. The 
addition of the polymer to the continuous phase may increase the 
surface tension; thus, the droplet remains spherical and the 
terminal velocity of the smaller drops is reduced whereas the 
terminal velocity of the larger ones remains the same. Dong et al. 
(2010) experimentally studied the rise and deformation of a single 
bubble in ionic liquids by injecting bubbles through orifices of 
different diameters. Their bubble sizes and aspect ratios are not 
close to the data that is available in the literature; hence they have 
developed a correlation for the terminal velocity by adjusting the 
parameters as a function of Reynolds number and the aspect ratio 
in addition to a new dimensionless number as a function of 
Eötvös number. Zhang et al. (2010) studied experimentally and 
numerically the motion and deformation of a bubble freely rising 
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through shear thinning Carreau model fluid by using level set 
method. They observed that for shear thinning non-Newtonian 
liquids, the power-law index n, has an influence on the bubble 
rise motion and its deformation. The viscosity around the bubble 
decreases as n decreases as a result the bubble still rises easily. 
Kennedy et al. (1994) studied the motion and deformation of the 
liquid drops and the rheology of dilute emulsions in simple shear 
flow at low Reynolds numbers. The drop shape is predicted to be 
perfectly spherical when the capillary number is zero. As the 
Capillary number has increased the drop elongates and resembles 
a prolate ellipsoid which agrees with Taylor’s small deformation 
theory where Ca is small and λ =1. A considerable amount of 
work has been reported on the rise and fall of liquid drops in 
Newtonian media and the solid sphere falling in a rectangular 
chamber through both Newtonian and non-Newtonian fluids. 
However, very little is known about the shape and deformation of 
the non-Newtonian power law and Carreau fluid droplets of 
different shapes like sphere, prolate spheroid, and oblate spheroid 
falling in the Newtonian domains. Thus, the aim of this work is to 
report numerical results on settling and deformation phenomena 

of spherical and spheroidal non-Newtonian droplets in a 
Newtonian medium. 

2. PROBLEM STATEMENT AND 
MATHEMATICAL DESCRIPTION 

Droplets of spherical, oblate, and prolate shape are placed 
in an air-filled chamber at room temperature to analyze their 
deformation characteristics. Emkarox and CMC were the power 
law and Carreau model fluids, while air is considered as the 
Newtonian medium and the summary of the fluid properties were 
detailed in Table 1. Consider a chamber of width equal to 0.1 
times the droplet's width. At a height of 18.5" from the 
channel's apex, the droplets fall freely, as depicted in Fig. 1. 
The continuous phase is held at a steady state throughout the 
study, while the deforming medium is held at a transient 
steady state. The governing continuity and momentum 
equations of both the phases are as follows: 

 

 
 

Table 1  Properties of Continuous and discontinuous phases 

S. No Material ρ (kg/m3) n λ(s) µ0 (kg/m.s) µ∞ (kg/m.s) Simulation Time

1 Newtonian 

Air 1.2 - - - - 0 - 2 Sec 

Water 1000 - - - - 0 – 2 Sec 

2 Carreau Model       

 Emkarox 970 0.5 1.58 8920 0 0 – 2 Sec 

3 Power Law       

 n = 0.4 398.107 0.4 - - - 0 – 2 Sec 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1 (a) Computational domain for the spherical droplet in the stagnant air medium, (b) Oblate spheroid droplet in the stagnant air 
medium, (c) Prolate spheroid droplet in the stagnant air medium 
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Table 2  Properties of Continuous and discontinuous phases used for validation with Ismail, (2007) 

S.No Material  ρ (kg/m3) µ (dynamic viscosity kg/m.s) 

1 Oil 880 0.0168 

2 Water 997 1.04 x 10-3 

 

Continuity equation: 

 0V   

Momentum Equation: 
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Extra stress tensor can be written as: 
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Where ρ and η are the density and viscosity of the fluid 
respectively. Furthermore, the viscosity equation for a power-law 

fluid can be written as :   
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where 

m and n are characteristics of a power-law fluid, referred to as 
power-law consistency index and power-law behavior index, 
respectively. The rate of deformation tensor (ε) and second 
invariant of the rate of deformation tensor (I2) are related to 
velocity components and their derivatives (see Bird et al., 1960). 
The Carreau model fluid viscosity can be written as. 

Carreau model fluid properties :
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Where µ1 is the dynamic viscosity of the fluid, µ∞ is the 
infinite shear rate viscosity, µ0 is the zero shear rate viscosity,  
model parameter, and n flow behavior index. 

3. NUMERICAL METHODOLOGY 

Using Comsol Multiphysics 4.3, the governing equations 
and the aforementioned boundary conditions were solved. For 
each simulation, it takes about 25-30 minutes to run with the fine 
meshing in order to achieve good convergence and accurate 
results for the smallest and largest elements of 0.28m, 0.04, and 
1.1, respectively. A 0.1-second time step was used to simulate the 
drop reaching the channel's bottom surface in the (0 – 2 sec) time 
range. To approximate pressure values, the Lagrange P2P1 
technique is utilized to handle velocity-pressure coupling. 
Dispersed phase properties, such as those of the Carreau model 
drops and the power-law fluids, will vary depending on fluid 
characteristics, therefore inputs are set to maintain a constant 
density and viscosity for the continuous phase. The relative 
tolerance criterion is set to 10-2, because COMSOL attempts to 
solve symmetric and non-symmetric systems using the PARDISO 

solver but fails to achieve the appropriate level of convergence. 
Different time increments were used to run the simulations. A 
time-dependent solver is utilized in this study to forecast the 
drop's velocity and deformation at 0.1 seconds inside the channel, 
rather than the drop's location within the channel. The domain 
was selected in such a way to avoid the shear effects as the initial 
attempt in solving the hydrodynamic properties. Hence fine mesh 
with 15000 node points was selected to solve the equation and 
run the simulations.  

4. RESULTS AND DISCUSSION 

4.1 Validation using COMSOL  

Numerical solutions must be validated with existing 
experimental and/or numerical results to ensure their reliability 
and accuracy. The container's height and width are chosen to 
match the study of Ismail (2007) specifications exactly. This 
study with submerged oil bubbles rising in water that is heavier 
and immersed with the oil layer on top of the container was used 
as a first validation case for our method. Table 2 lists the fluid 
properties used in the comparison case simulation. The scattered 
phase moves in a continuous phase by buoyancy force when there 
is a density difference, but no external driving force is provided 
here. Vertical walls are provided a wetted wall parameter so that 
fluid interfaces can travel along them, while the top and bottom 
containers are left without slip conditions. Figure 2 shows the 
modeling results in good agreement with the experimental results 
of Ismail (2007). Using this method, we may analyze the 
deformation of droplets without having them disperse in a 
stationary environment. 

4.2 Volume fraction contours 

Volume fractions of spherical, oblate, and prolate power-law 
and Carreau model droplets that settle in stagnant air are seen in 
Fig. 3 as a function of time. The droplet moves primarily as a 
result of the density differential between the scattered and 
continuous phases, as well as the downward pull of gravity. Due 
to the fact that surface tension tends to reduce surface area, a 
droplet with radius R = 0.5 m initially has a perfectly spherical 
shape, at t=0, i.e., initial velocity. The droplets are allowed to 
descend slowly as a function of time until they reach the bottom 
of the channel. As the droplets are descending initially there 
observed no significant deformation till t= 0.5 sec and a small tail 
has appeared at t=1.0 sec for both power-law and Carreau model 
droplets of prolate and oblate shaped droplets. This may be due to 
the fact that increasing the volume of the droplet under shear 
thinning effects may lead to the formation of the tail (Gollakota & 
Kishore, 2017). In the case of the spherical droplets the 
deformation is quite rapid initiated at t=0.5 sec with a bell-shaped 
structure with a tailed extension which is the same with the case 
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of Carreau model droplets. Whereas, the power-law droplet 
possesses oblate extension just with a small extension due to the 
viscosity. Similar deformations were continued till the droplets of 
different shapes in both power law and Carreau models were 
reported till they reach the bottom of the surface. The spherical 
droplet at t=1.5 sec for power law and Carreau model fluids were 
completely deformed. In conclusion, it is understood that the drop 
deformation occurs under the influence of the viscous forces of 
the surrounding liquid, external disturbances created due to the 
wall effects, and the dimensionless parameters called Reynolds 
number, weber number, and Bond number etc. 

4.3 Pressure Distribution 

The physics underlying the pressure distribution of the 
droplets is more generally addressed by examining the air and 
water systems. The only reason for the drop's mechanical stability 
is due to the surface forces between the fluid and the drop contact. 
When surface tension acts alone, it succeeds in molding the drop 
into a shape with a low surface to volume ratio. The net inward 
pull of the molecules deeper within the drop increases the surface 
tension of the liquid, increasing the pressure within the drop and 
above the prevailing continuous phase outside the drop. The 
current system demonstrates that the water drop is moving with a 
terminal velocity, implying that the drop is only being supported 
against gravity by the vertical component of the pressure forces 
and the surface shear stresses caused by apparently upward 
rushing air. Similarly, there should be the same vertical pressure 
gradient should exist within the drop of exactly the sort found in 
any mass of fluid (air) at rest in a gravitational field. Spilhaus 
(1948) show that for large drops larger than 0.05cm, the 
difference in hydrostatic pressure between the top and bottom of 
the drop becomes quite important in controlling the drop shape. 
Figures 7-8 depict the pressure distribution around spherical and 
spheroidal droplets in the continuous phase and different 
dispersed phases, namely the Carreau model droplet (Emkarox) 
(Fig. 4) and the power law droplet.  

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2 Comparison of Volume fraction images of Oil bubble 
rising in water observed in Ismail (2007) and the present 
predicti  ons 

 
 

Fig. 3 Volume fraction contours of spherical and spheroidal 
Carreau model fluid droplets of n-0.4 settling in stagnant 
air a) Spherical b) Oblate ellipsoid c) prolate ellipsoid 

 
 

Fig. 4 Pressure Distribution of spherical and spheroidal 
Carreau model fluid droplets of n-0.4 settling in stagnant 
air a) Spherical b) Oblate ellipsoid c) prolate ellipsoid 
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The internal recirculation phenomenon seen in Fig. 4 can be 
explained as follows: if the boundary of an air flow is solid, the 
no slip boundary condition states that air is in contact with a 
relatively at rest boundary. In the case of non-Newtonian drops 
falling in a continuous stagnant medium of air, it is observed that 
the drops of viscous liquids resist breakup due to the resistance of 
developing internal recirculation's, and an increase in viscosity 
plays an important role in suppressing drop breakup by inhibiting 
rapid internal motions. In the case of oversize drops, however, 
this phenomenon is reversed. The pressure coefficients for the 
spheres gradually decrease in flow fields where viscosity is a 
major factor. Thus, the trend of the pressure distribution at 
various time steps seems to be similar for all the cases of Non-
Newtonian droplets. 

4.4 Velocity field streamlines 

Streamlines are tangential to the flow's velocity vector, 
which represents the fluid element's direction at any point in time. 
When a droplet falls freely due to gravity, the pressure gradient at 
the top surface of the droplet is greater. As time passes, the 
domain fluid penetrates the droplet, causing the bottom surface to 
approach the droplet cap. Along with this, the droplet velocity 
increases normally until it reaches a nearly stable value and then 
decreases when it hits the bottom of the wall. As the velocity of a 
freely settling droplet increases, the shape of the droplet changes 
from spherical to shell. The velocity distribution around a free-
falling droplet in which the droplet pushes the liquid downward 
and a toroidal vortex forms on the droplet's side. The significant 
velocity gradients in front of the droplet are depicted in the flow 
field. As time passes, the velocity difference decreases and 
approaches a constant value, which can be considered the 
droplet's terminal velocity. In this study, no specific velocity is 
given for the droplet to move because it is falling freely due to 
gravity forces, and thus there is no recirculation. The velocity 
distributions around the Power-law and Carreau model droplets 
freely settling in the stagnant air medium are shown in Fig. 5. The 
velocity distributions for prolate and oblate shaped droplets are 
found to be closely related to the Carreau and power law systems. 
The falling drop pushes the liquid downwards and in front of it, 
and the liquid flows back into the bubble wake, forming the 
vortex at the drop's fore–aft symmetry. When the velocity of the 
falling droplet increases, the convection forces increase in 
comparison to the viscous forces. The recirculation trend will 
vary with the dilatational behavior of the fluids, as shown in 
Figure 5. When a water drop falls freely with a constant velocity, 
it is expected to oscillate with periodic vortex shedding in the 
unstable wake. This is known as the terminal velocity. Such drop 
oscillations will tend to disrupt the drop's regular steady internal 
recirculation, reducing overall internal recirculation. However, as 
the shear thinning effects increase, so does the vortex. The higher 
the interfacial tension, the faster the ring will form, as illustrated 
in Figure 5. The flow field exhibits a significant velocity gradient 
in front of the drop, which corresponds to the high shear rate 
region at the front. Second, the presence of walls may suppress 
the convection force, but the wall effects are ignored in the 
current study. The retardation effects of the wall are reduced as a 
result of the wall's unconfinement, and a small recirculation is 
observed. When the velocity of the falling droplet increases, the 
convection forces increase in comparison to the viscous forces. 
The size of the vo  rtex created by the Newtonian fluid is greater 
for non-Newtonian and power-law droplets than for shear 
thinning fluids, and as the value of 'n' decreases, the size of the 

vortex becomes smaller, so reverse flow is small for shear 
thinning fluids. This demonstrates that the length of the 
recirculation is inversely proportional to the power law index, 
wall factor, and Reynolds number. 

 
 

Fig. 5 Velocity Distribution of spherical and spheroidal 
Carreau model fluid droplets of n-0.4 settling in stagnant 
air a) Spherical b) Oblate ellipsoid c) prolate ellipsoid  

 

Fig. 6 Viscosity Distribution of spherical and spheroidal 
Carreau model fluid droplets of n-0.4 settling in stagnant 
air a) Spherical b) Oblate ellipsoid c) prolate ellipsoid  
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4.5 Viscosity Distribution 

If the viscosity of the suspension is larger than the viscosity 
of the suspending fluid at low shear rates, the droplets remain 
spherical because of the surface tension (Funfschilling, 2006). 
When the shear rate is high enough to distort the bubbles 
sufficiently and diminish the mixture's viscosity. The complicated 
rheological behavior of non-Newtonian fluids makes the viscosity 
vulnerable to shear stress as well. A non-Newtonian fluid's 
viscosity near a rising droplet is considerably different from the 
local viscosity near a falling droplet because of the relative 
motion of the fluids. Therefore, it is essential to know the local 
viscosity distribution around the rising or falling droplet in non-
Newtonian fluids in order to explain droplet movement. 
Newtonian (stagnant air). For the Carreau model system and the 
power law droplets, the droplet's shape and motion are 
significantly different at t=0.5 seconds. An oblate spheroid bubble 
forms as the shear thinning intensifies. The viscosity of shear 
thinning fluids changes as the shear rate increases, and this 
change is linked to the magnitude of the velocity vector indirectly. 
Viscosity with an infinite shear rate increases in the downstream 
direction as speed rises. Additionally, lower viscosity affects the 
drop motion. When compared to the Emkarox droplet, the 
Carreau model's trend is substantially different, showing that the 
dispersed phase's shear thinning impact is greater and the 
droplet's zero shear rate viscosity is extremely high (Fig. 6). The 
shear thinning effect in non-Newtonian fluids is caused by the 
non-uniformity of the liquid flow around the moving and 
deforming drop. As a result, viscosity variations have a major 
impact on the drop forms and deformations in the case of the 
power-law droplet. Because of this, when a drop is deformed or 
moved, the shear thinning effect is greatly increased due to low 
viscosity, which in turn increases deformation. 

5. CONCLUSIONS 

In this study, many features of falling droplet movement, 
such as the droplet's shape while falling, the droplet's terminal 
velocity are calculated. Different droplet forms and velocities at 
different time intervals are studied numerically. Droplets of 
various forms and velocities are studied numerically at time 
intervals ranging from 0 to 2 seconds. To put it another way: The 
surrounding liquid's viscous forces influence drop deformation, 
together with external perturbations caused by wall effects and 
dimensionless characteristics such as Reynolds number, Weber 
number and Bond number. From the velocity distribution 
contours, it can be seen that the velocity steadily increases as it 
falls freely and achieves nearly constant values before hitting the 
bottom of the channel's walls. In the simulation, the droplet does 
not move due to the absence of an entrance velocity. Variations in 
fluid parameters, such as viscosity and deformation, appear to be 
almost equal in terms of velocity variation. In the case of drop 
deformation and motion, the viscous effects are quite significant, 
and the shear thinning impact is particularly large when the 
viscosity is low, which amplifies the deformation. 
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