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Intelligent heuristic computing paradigm: A novel strategy to singular differential 
difference equations analysis 

Nabeela Anwar 1, Muhammad Junaid Ali Asif Raja 2, Iftikhar Ahmad 3, Adiqa Kausar Kiani 4

ABSTRACT

n the presented study, a novel intelligent heuristic computing paradigm based on artificial intelligence is introduced for solving 
linear singular differential difference equations (SDDEs). Unsuper-vised artificial neural networks (ANNs) with universal function 
approximation capabilities are employed to establish a mathematical model for the problem, incorporating a mean squared error 
function. The design parameter training for ANN models involves utilizing the global search capabilities of a genetic algorithm 
(GA), an effective local search through an interior point approach (IPA), and hybridization of GA-IPA. The precision, reliability, 
and robustness of the proposed methodology are endorsed through comprehensive comparative analysis against exact solutions 
and previously reported findings in the lit-erature. Statistical assessments of the outcomes are employed to confirm the accuracy 
and convergence of the design approach. Multiple independent runs of these algorithms are also conducted and compared against 
approximate numerical solutions to ensure accuracy and convergence.

Keywords: Heuristic computing paradigm; Differential difference equations; Artificial neural networks; Interior point approach; Ge-
netic algorithm. 

1.　INTRODUCTION
Numerous real-world phenomena have been successfully 

modelled using differential difference equations (DDEs) with de-
lay or advanced terms in engineering, economics, control theory, 
and other fields [1]. Ad- ditionally, DDEs have found applications 
in areas such as epidemiological and population dynamics mod- 
eling [2–4]. SDDEs are difficult to handle analytically. Therefore 
in recent years research community took serious consideration to 
investigate the numerical techniques for solving the linear SDDEs. 
Although only a few techniques are existing to tackle these prob-
lems analytically and numerically due to singularities at different 
points. A number of numerical methods were used, including mod-
ified Hermite operation matrix technique [5], Taylor series method 
[6], variational iteration method [7], Maclaurin series method [8], 
fitted finite difference method [9], Lagrange operational matrix 
technique [10], quadratic B-spline approxima- tion [11], extended 

cubic B-spline collocation method [12], homotopy analysis meth-
od [13], optimal homo-topy asymptotic method [14], reproducing 
kernel discretization technique [15], modified Legendre spectral 
method [16], finite difference method [17–19], Legendre wavelets 
spectral scheme [20], modified Adomian decomposition method 
[21, 22], Fibonacci operational matrix approach [23], noncon-
forming virtual el- ement technique [24], successive differentiation 
method [25], homotopy perturbation method [26–28]. Moreover, 
Ramos et al. presented a pair of optimized hybrid block techniques 
to incorporate singular initial value problems of second order [29]. 
Seiler et al. explored the presence, smoothness, and multiplic- ity 
of solution for initial value problems (IVPs) associated with scalar 
quasi-linear ordinary differential equations (ODEs). These solu-
tions are characterized by an impasse point in the context of the 
given  initial condition. [30]. Daba et al. presented a collocation 
method for determine the numerical solution   of time dependent 
differential difference equations (DDEs) having small shifts [31]. 
The robust numerical approach for solving the semilinear partial 
singularly perturb DDE having spatial delay was proposed by 
Kabeto et al. The semilinear term is linearized using the quadrat-
ically convergent quasilinearization approach. It’s described as a 
system of algebraic equations after discretizing the solution do-
main and substituting the differential equation with a finite differ-
ence approximation [32]. Xiao et al. investigated the positivity as 
well as asymptotic stability for a DDE having the delay in time. 
The authors obtained the necessary as well as sufficient conditions 
in the case of bounded delay on the basis of comparison principle 
and timescale theory while sufficient criteria are achieved in the 
case of unbounded delay [33]. Yu¨zba¸sı introduced a numerical 
approach for solving high order linear SDDEs that gives an ap-
proximate polynomial solution [34].

The linear SDDE in generic form can be expressed as [34]:
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(1)

along with boundary conditions:

 
       

(2)

whereas αβγ , δβγ , aζγ , cζγ and λζ are finite constants, y(0)(r) = 
y(r) is an unknown function, and Pβγ (r), f (r)  C(0, c), and Pβγ (r), 
f (r) are not defined functions at the points r = 0 and r = c [34].

Recently, Numerous researchers have directed their efforts 
towards harnessing the capabilities of ANNs to tackle linear and 
nonlinear models encountered in a diverse range of fields such as 
applied mathematics, physics, and technology, as cited in refer-
ences [35–39]. The well-established potential of neural networks 
for comprehensive function approximation is further enhanced by 
the development of both local and global search strategies. These 
approaches are particularly valuable for solving linear and nonlin-
ear differential equations, as well as differential difference-based 
systems. According to the referenced literature, some examples of 
applications include difficulties in nanotechnology, electromag-
netic theory, fluid dynamics, nonlinear influenza models, SVEIR 
models with vaccination, tumour modelling, wireless sensor net-
works, avian influenza systems, plant virus systems, and nonlinear 
corneal shape modelling [40–50] mentioned therein. However, 
such a stochastic solver has not yet been implemented for an effec-
tive and reliable solution of stiff and non-stiff SDDEs. Therefore, 
the above mentioned characteristics are the insipirations for au-
thors to intoduce a new ANNs based differential difference model 
optimized with hybrid computing mechanism for finding an accu-
rate, alternate, robust and stable solution for the SDDEs. However, 
various research workers handled linear SDDEs using different 
techniques, and some authors employed both analytical as well 
as numerical methods. In this research, we used a soft computing 
approach to solve linear SDDEs, and the proposed scheme pro-
vides reliable convergence as compared to the other techniques in 
existing literature.

The proposed study’s key attributes are briefly emphasized 
through the following notable characteristics:
• A novel intelligent heuristic computing paradigm has been in-

troduced for solving the SDDEs, com- bining the global search 
capabilities of genetic algorithms with the local search expertise 
of interior point algorithms.

• The computational process integrates modeling and optimization 
techniques, utilizing ANNs, GAs, IPA, and their hybrid GA–IPA, 
to derive precise solutions for the governing relations of SDDEs.

• Convergence analysis is performed across multiple independent 
trials to validate the efficacy of stochastic methods in achieving 
robust, reliable, and consistent solutions for SDDEs.

• Statistical evaluations of the results are utilized to validate the 
precision and the convergence of the designed intelligent heuris-
tic computing paradigm.

The remaining portion of this paper unfolds as follows: In 
Section 2, we illustrate the mathematical modeling of SDDEs, em-
ploying artificial neural networks (ANNs). Section 3 provides an 
overview of the methodologies employed to solve SDDEs using 
ANNs. In Section 4, we present a comprehensive discussion of 
simulation-based results and their implications. Section 5 is ded-
icated to a thorough statistical analysis, aimed at validating the 
accuracy and reliability of the computed results. Lastly, in Section 
6, we draw our conclusions.

2.　ANN’S MATHEMATICAL MODELING
The mathematical modelling for linear SDDEs are provided 

in two parts: the 1st part develops ANNs model for the solution 
of SDDEs and the derivative terms, and the 2nd part describes 
fitness function composition using ANN models.

ANNs based mathematical models for SDDEs are developed 
as continuous mappings for the solution y(r), its 1st, 2nd, and so 
on nth order derivatives, as follows:

                  
(3)

where n denotes the number of nerons, g is known as the 
activation function, µ, ω, ν are real valued adaptive parameters. 
Mathematical modeling can be constructed through log sigmoid 
function gls used as transfer function given as:

                               (4)

Log sigmoid function gls is used to construct ANNs architec-
ture for SDDEs to approximate solution (r).

 (5)

(6)

(7)

(8)

‧
‧
‧

 (9)

The fitness function for SDDE is formulated by defining an 
unsupervised error can be expressed as:

 (10)

where e1 corresponds to differential equation and e2 corre-
sponds to the initial conditions can be expressed as:

 (11)

 (12)



Nabeela Anwar and Muhammad Junaid Ali Asif Raja and Iftikhar Ahmad and Adiqa Kausar Kiani:Intelligent heuristic computing paradigm: A novel
strategy to singular differential difference equations analysis

15

here r  (0, c), ζ = 0, 1, . . . , n － 1, N = , i = (ri), ri = ih 
and ′h′ represents the step size.

So, the networks mentioned in equations (5) to (9) approx-
imate the (r) solutions when it approaches to proposed solution 
y(r). If the weights of the networks are appropriate and eSDDE 
approaches zero, the approximate solution (r) coincides with the 
exact solution y(r) of SDDE.

Fig. 1　Neural network architecture for the SDDEs

3.　LEARNING METHODOLOGIES
The interior point algorithm (IPA), genetic algorithm (GA), 

and hybridization of GA-IPA based optimization mechanisms 
are used to learn the unknown variables of the networks, and the 
weights of these approaches are utilized in ANNs models to gen-
erate the approximate numerical results of linear SDDEs. This sec-
tion briefly describes an overview of optimization techniques that 
are utilized as adaptive processes for learning weights of ANNs 
models is presented. Figure 1 illustrates the overall procedure of 
the design approach.

3.1 INTERIOR POINT ALGORITHM

IPA was firstly presented in the form of barrier methods 
in early 1960s. IPA build upon Karmarkar’s algorithm. In 1984 
Narendra Karmarkar was introduced IPA to deal with the linear 
programming approaches [55]. IPA is group of algorithms, which 
solve constrained optimization problems [57, 58] in engineering 
as well as in applied science. Also research on economic dispatch 
problem [59] along with multi area optimal reactive power flow 
[60] are in focus of same period of time. To cover up the convex 
set, the capital coefficients of interior point algorithms rely on self 
responsive barrier functions. Similar to the conventional simplex 
approach, the most acceptable solution is pursued by infusing the 
interior of the practicable region [61]. With either the Newton step 
in conjunction with a linear programming technique or the con-
jugate-gradient step demonstrating a reliance zone, IPA is used 
to solve approximation problems. Interior point techniques have 
been employed effectively in several examples that may be clari-
fied by a column generating process. Wets and Van Slyke’s meth-
od of L-shaped decomposition [63] for stochastic programming 
approaches have been employed by Bahn et al., [62]. Goffin et 
al., found the solution of non differentiable optimization problems 
[64] as well as multi commodity network flow problems iterating 
an interior algorithm column generation technique [65].

Table 1　Settings for the IPA parameters in the fmincon 
function

Parameters Settings
Function tolerance zero
Maximum iteration 999

Hessian BFGS
Max. function evaluations 1000000

X tolerance 10−12

Nonlinear constraint tolerance zero
 Initial point generation  (0,1)

Initial point size 30
Fin. differences type Forward difference

3.2　GENETIC ALGORITHMS
GA consists of the postulation of natural collection and genet-

ics.. The preliminary research suggests that the general representa-
tion is ineffective for solving dense problems in genetic algorithms 
in a dynamic  and adaptive manner. In large-scale optimization 
problems, the time it takes to develop first-generation GAs in-
creases dramatically, while the quality of the solutions decreases. 
Selection methods, concealing techniques, knowledge-based, and 
self-adaptive operators, among other aspects, play a significant 
role in the acquisition of extremely convex and fuzzy nature prob-
lems. Since its inception, genetic algorithms have been used to 
optimise adaptable domains of interest [66, 67]. GAs also used as 
a efficient approach for execute simulation, modeling, forecasting, 
control etc., As a viable alternative for tackling complex nonlinear 
systems described by differential equations, and with a focus on 
showcasing successful applica tions that illustrate the methodolo-
gy and highlight the advantages of the proposed approach [68–76].

Neural networks model are trained for optimization using 
matlab builtin functions GA and fmincon in graphical user inter-
face . Parameter settings for IPA and GA are listed in Table 1 and 
Table 2 respec tively. The step-by-step procedure of the GA-IPA 
can be outlined as follows:

Algorithm Initialization: Population is generated randomly 
with real values work as initial point for the algorithm. In the neu-
ral network model for SDDEs, each neuron possesses the same 
number of elements as the count of unknown weights.

Prior to initiating the algorithm, it’s crucial to take into ac-
count the parameter values provided in Table 1.

Fitness Calculation: Calculation of fitness value is made for 
each individual’s population by using equa tion (10) for neural 
networks model.

Classification: Classify each individual of the populations 
based on the lowest value of corresponding fitness function of the 
neural networks model.

Decisive Criteria: If any of following criteria matches, stop 
processing the algorithm :
•  10−15
• The value of generations as setting in Table 1 is achieved
• Non-constraint tolerance and function tolerance is accomplished

If Decisive criterion is achieved liable in Table 1, then go to 
step 7, otherwise go to step 6 Reproduction: New population is 
produced at each cycle based on crossover, mutation and selection 
functions as given in Table 1

Hybridization: For rectification in results interior point algo-
rithm is used by choosing of the perfect individual. Initial weights 
comprise on GAs results.

Table 1 shows the IPA parameter settings.
Accumulation: For each execution of the solver, accumulate 

the final fitness value and weight vector. The generic flowchart 
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of overall process of GA-IPA is elaborated in Fig. 2. The values 
of parameters for IPA and GA are elaborated in Tables 1 and 2, 
as well as ANN structure based on the input/hidden/output layer 
is presented in Fig. 1, these settings not only used to reproduce 
the results illustrated numerically and graphically in the article, 
but also represent one of the best structure of ANN hybrid with 
GA-IPA to be exploited by the research community in their future 
studies relevant to this work.

4.　RESULTS AND DISCUSSION
The numerical results along with graphical representation of 

the homogeneous and inhomogeneous initial value problems of 
SDDEs are presented in this section. The neural networks model 
are optimized with IPA, GA and their hybridization of GA-IPA and 
prove the worth of present scheme by comparing with

Fig. 2　Procedural steps of hybrid approach GA-IPA

Table 2　Parameter settings for GA algorithm
Parameters Settings

Population size  [30 30 30 30 30 30 30 30 30 30] 
Population type Double vector
Scaling function Rank

Function of mutation Adaptive feasible
Minimum perturbation 10−09

Hybrid function FMINCON
Elite count 2, 3

Crossover fractions 0.80
Migration fractions 0.3

Size of chromosomes 40
Stall generation 60, 90
Bounds values  (−9, 9)
Initial penalty 10

Migration direction Forward
Function Tolerance 10−12, 10−20

Generations 100000
Crossover function Heuristic, scattered

Penalty factor 100
Fitness limit 10−15

Stall generations 50, 100
Non-constraints tolerance 10−10

Sub population 20
Selection function Stochastic uniform, uniform

Others Default

aforementioned solutions in literature and exact solution as 
well. Statistical analysis of the design scheme depend on adequate-
ly large number of independent runs is presented for each problem.

4.1 INHOMOGENEOUS LINEAR SINGULAR DIF-
FERENTIAL DIFFERENCE EQUATION

Consider the IVP of inhomogeneous linear SDDE as [34]:

 (13)

where r  [0, 1], and y(r) = cosr represents the exact solution. 
So the fitness function is constructed by using equation (10) is as 
follows:

 (14)

 (15)

where i = (2ri+1), i = (ri+2), i = (ri－1), i = (ri+1), 
ri = ih, ri+1 = , ri+2 = i, ri+3 = i. We executed the optimized 
solvers using built-in MATLAB functions by configuring the pa-
rameter values outlined in both Table 1 and Table 2. The optimized 
solvers, which include IPA, GA, and the hybrid GA-IPA approach, 
were employed to train the neural network weights, with the aim 
of approximating the solution for SDDEs. This process was based 
on our designed methodology that utilizes unsupervised neural 
network models for Equation (13), with Equations (14) and (15) 
serving as fitness functions for optimization. We employed a net-
work configuration featuring 10 neurons and utilized a step size of 
h = 0.1. The equations described in (5-8) were employed to derive 
the proposed solution (r) for Equation (13).The graphical view of 
optimal weights can be seen in Fig. 3 for one specific result of the 
design scheme with corresponding fitness is as follows:

 (16)

(17)

(18)
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Fig. 3　Trained weights for ANNs Using IPA, GA, and GA-
IPA

Table 3　Parameter settings for GA algorithm
r yExt IPA GA GA − IPA

0.0 1.000000 0.999922 0.999686 0.999988
0.1 0.995004 0.994921 0.994455 0.994984
0.2 0.980067 0.979976 0.979333 0.980017
0.3 0.955336 0.955238 0.954493 0.955226
0.4 0.921061 0.920960 0.920198 0.920851
0.5 0.877583 0.877494 0.876799 0.877237
0.6 0.825336 0.825286 0.824732 0.824827
0.7 0.764842 0.764870 0.764517 0.764149
0.8 0.696707 0.696862 0.696752 0.695824
0.9 0.621610 0.621954 0.622105 0.620545
1.0 0.540302 0.540906 0.541311 0.539075

We calculated approximate numerical solutions for neural 
network models using three different methods: IPA, GA, and hy-
bridization of GA-IPA. These results are presented in Table 3, and 
the computations were performed for input values t belongs to [0, 
1] having a step size of  h = 0.1. We also assessed the results for the 
same input parameters as those outlined in Table 3. Our findings 
indicate that the proposed solution closely aligns with the exact 
solution, exhibiting a high degree of accuracy, typically within a 
range of 5 to 6 decimal places. Further, the graphical representa-
tion obtained by the neural networks model in Fig. 4(a) are per-
sistently overlap the exact solution, which certified the precision 
of the proposed scheme. We also noticed that the Absolute Errors 
(AEs) for the IPA, GA, and GA-IPA methods fall within the rang-
es of approximately 10−07→10−09, 10−06→10−09, and 10−06→10−10, 
respectively, as indicated in Table 4. In contrast, the Bessel Matrix 
Method (BMM), as reported in the literature [34], exhibits AEs 
within the range of approximately 10−04→10−06.

Fig. 4　Comparison of ANNs results for the Proposed Results 
and Exact Solution in Problem I

Table 4　Comparison of the proposed solutions in terms of 
AE for Problem I

r
Proposed results BMM results in literature

IPA GA GA-IPA BMM [34]
0.0 9.88E-08 1.55E-10 0.0E+0
0.2 8.25E-09 5.38E-07 2.42E-09 2.46E-006
0.4 1.03E-08 7.45E-07 4.41E-08 1.81E-005
0.6 2.50E-09 3.64E-07 2.60E-07 5.59E-005
0.8 2.41E-08 2.03E-09 7.79E-07 1.20E-004
1.0 3.64E-07 1.02E-06 1.51E-06 2.12E-004

4.2　HOMOGENEOUS LINEAR SINGULAR DIFFER-
ENTIAL DIFFERENCE EQUATION

Consider the IVP of homogeneous linear SDDE as [34]:

 (19)

The exact solution for the IVP is expressed as y(r) =  . We 
applied the same methodology as in the

previous problem, but the fitness function specifically de-
signed for this problem is expressed as follows:

 (20)

 (21)

To optimize the fitness function described in Equation (20), 
we employed three different optimization solvers, namely IPA, 
GA, and GA-IPA. The results obtained from a single run of our 
design approach are visually represented in Figure (5). These op-
timized weights, which are determined through the optimization 
process, are then applied in Equation (19) to produce approximate 
solutions for Singular Differential Difference Equations (SDDEs) 
as follows:

 (22)

(23)

(24)
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We computed approximate numerical solutions using neural 
networks with IPA, GA, and their hybridiza-

Fig. 5　Trained weights for ANNs Using IPA, GA, and GA-
IPA

tion GA-IPA,  and the results of each solver are presented 
in Table  5 for input values within the range r  [0, 1] having a 
step size of 0.1. Additionally, exact solutions were also computed 
and are displayed in Table 5 for the same inputs.  The graphical 
representation of the approximate solutions overlapping with  the 
exact solution is illustrated in Fig. 6(a),  confirming the accuracy 
to a precision of 4 to 5 decimal  places. In terms of Absolute Er-
rors (AEs), a comparison was made with the Variational Iteration 
Method (VIM) [34], and the results are summarized in Table 6. 
Notably, the AEs for IPA, GA, and GA-IPA fall within the ranges 
of 10−07→10−09,  10−05→10−06,  and 10−09→10−10 respectively,  and 
the AEs of  VIM are lie in 10−05→10−16.  It’s important to observe 
that the proposed results exhibit stability in AEs, whereas the AEs 
of VIM are not consistent.

Additionally, we investigated the approximate solution of 
Problem II using various numbers of trained weights in ANN 
based SDDE models. Typically, the weights assigned to neurons 
strike a balance between the algorithm’s complexity and its ac-
curacy. The approximate solutions were computed for different 
scenarios with N = 10, 15, and 30, and the results are detailed in 
Tables 7 and 8. According to our findings, adding more neurons 
leads to more accurate algorithms, but at the cost of a much higher 
processing effort.

Table 5　 Exact and proposed results in case of problem II

r rExt IPA GA GA − IPA
0.1 1.000050 1.009962 1.009926 1.010036
0.2 1.040811 1.040654 1.039139 1.040796
0.5 1.284025 1.283872 1.281979 1.284007
0.7 1.632316 1.632090 1.629597 1.6322814
0.8 1.896481 1.896240 1.893389 1.896450
0.9 2.247908 2.247607 2.244200 2.247863
1.0 2.718282 2.717940 2.713940 2.718267

Fig. 6　Comparison of ANNs results for the Proposed Results 
and Exact Solution in Problem II

Table 6　 Comparative studies of ANNs solutions in terms of 
AE in case of Problem II, N=15

t
proposed results Results VIM in literature

IPA GA GA-IPA VIM [34]
0.1 1.32E-08 3.89E-07 3.89E-07 2.22E-16
0.2 3.85E-08 6.60E-07 6.60E-07 4.44E-16
0.5 3.78E-08 7.34E-07 7.34E-07 3.89E-10
0.7 7.29E-08 1.38E-06 1.38E-06 8.71E-08
0.8 8.86E-08 1.64E-06 1.64E-06 7.51E-07
0.9 1.33E-07 2.53E-06 2.53E-06 5.04E-06
1.0 1.85E-07 3.48E-06 3.48E-06 2.79E-05

Table 7　 Comparison of the proposed solutions in terms of 
AE in case of Problem II, N=30

t
Proposed results

IPA GA GA-IPA
0.1 7.84E-09 1.50E-06 2.10E-10
0.2 2.47E-08 2.80E-06 2.31E-10
0.5 2.34E-08 4.19E-06 3.26E-10
0.7 5.10E-08 7.40E-06 1.22E-09
0.8 5.78E-08 9.56E-06 9.43E-10
0.9 9.09E-08 1.37E-05 2.05E-09
1.0 1.17E-07 1.88E-05 2.15E-10

Table 8　 Comparison of the proposed solutions in terms of 
AE in case of Problem II, N=45

t
Proposed results

IPA GA GA-IPA
0.1 4.12E-10 8.64E-08 2.54E-17
0.2 1.33E-09 3.27E-07 2.46E-17
0.3 1.68E-09 2.90E-07 2.45E-17
0.4 1.30E-09 2.10E-07 1.78E-17
0.5 1.23E-09 2.59E-07 2.49E-17
0.6 2.15E-09 3.95E-07 5.50E-17
0.7 3.18E-09 4.85E-07 1.00E-16
0.8 3.24E-09 5.80E-07 1.48E-16
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0.9 5.45E-09 8.99E-07 3.28E-16
1.0 5.92E-09 1.24E-06 5.56E-16

5.　STATISTICAL ANALYSIS
We conducted a comprehensive statistical analysis to verify 

the reliability and convergence of our design approaches. For each 
solver used, we performed 100 independent runs, and from these 
runs, we computed various statistical measures, including the 
minimum (MIN), maximum (MAX), mean, mean absolute error 
(MAE), standard deviation (SDT), and mean square error (MSE) 
of the AEs associated with the proposed results.

The MAE is written as:

 (25)

whereas r  (r0 = 0, r1 = 0.1, r2 = 0.2, ...., r10 = 1). It is noted 
that the MAE valuesfor IPA lie around 10−08, 10−06 and 10−05 , for 
GA the order lies around 10−09, 10−08 and 10−07, and GA-IPA lies 
around 10−09, 10−07, 10−05 in case of problem I. The MSE is written 
as:

 (26)

whereas r  (r0 = 0, r1 = 0.1, r2 = 0.2, ...., r10 = 1).  Where i 
represents the initial independent run and W represents the overall 
independent runs of the stochastic solvers. we run our algorithm 

for 100 times independently for all three proposed approaches for 
inputs r  [0, 1] with stepsize h = 0.1. The results computed by 
100 independent runs are provided in Table 9. We also computed 
the average values for these runs, and for problem I, the results for 
each solver are as follows: For the IPA solver, the average values 
are approximately: MIN: 10−06, MAX: 10−10, SDT: 10−10, Mean: 
10−19, and MSE: 10−09. For the GA solver, the average values are 
approximately: MIN: 10−06, MAX: 10−02, SDT: 10−08, Mean: 10−03, 
and MSE: 10−07. For the hybrid solver GA-IPA, the average values 
are around: MIN: 10−11, MAX: 10−19, SDT: 10−22, Mean: 10−20, and 
MSE: 10−10. These values reflect the statistical results obtained for 
problem I.

Moreover, the graphical view of the results for fitness ’eSDDE’, 
MAE, and root mean square error (RMSE) can be seen in Fig. 7(a-
d). It is noted from Fig. 7(a) and Fig. 7(b) that the hybridization 
of GA-IPA show good convergence for fitness ’eSDDE’, Fig.7(c) 
shows that GA gives low fitness ’eSDDE’, and from Fig. 7(d) GA-
IPA also consistently convergent. We performed 100 independent 
runs to calculate the MAE for problem II. For the IPA solver, the 
MAE falls within the ranges of 10−07 to 10−05, for the GA solver, 
it ranges from 10−06 to 10−05, and for GA-IPA, the MAE values 
vary between 10−06 and 10−05. We computed the mean values for 
MSE, SDT, Mean, Max and Min for each solver in Problem II. The 
results are as follows: For the IPA solver, the average values fall 
within the ranges of 10−06 for Min, 10−06 for Max, 10−07 for Mean, 
10−07 for SDT, and 10−10 for MSE. For the GA solver, the average 
values are approximately: 10−12 for Min, 10−12 for Max, 10−17 for 
Mean, 10−12 for SDT, and 10−06 for MSE. For the hybrid approach 
GA-IPA, the average values are within the ranges of: 10−05 for Min, 
10−05 for Max, 10−05 for Mean, 10−05 for SDT, and 10−10 for MSE. 
We also evaluated the proposed results (r) against 100 indepen-
dent runs for fitness ’eSDDE’, MAE, and RMSE, as illustrated in Fig. 
8(a-d). It’s evident that the hybrid approach outperforms the other 
two techniques in terms of achieving a lower fitness

Table 9　 Results of statistical analysis on the basis of fitness ’e’

Technique r
Problem-I

Min Max Mean SDT MSE

IPA

0.1 5.30E-13 2.04E-08 2.49E-16 4.38E-09 2.30E-08
0.3 2.28E-11 4.32E-06 2.29E-11 3.60E-06 4.56E-06
0.5 5.28E-11 7.03E-05 4.82E-09 4.73E-05 7.68E-05
0.7 5.54E-10 8.99E-06 2..37E-07 6.41E-15 2.36E-07
0.9 8.47E-11 2.70E-17 3.18E-06 2.72E-12 4.74E-06

GA

0.1 2.38E-05 8.82E-02 7.24E-03 9.89E-14 4.66E-07
0.3 3.43E-05 3.71E-01 2.39E-02 3.62E-12 2.85E-06
0.5 3.68E-06 2.60E-01 2.63E-02 7.30E-12 7.04E-06
0.7 2.79E-04 3.20E-01 3.23E-02 2.79E-10 2.83E-05
0.9 5.43E-04 3.45E-01 3.75E-02 8.45E-10 5.57E-05

GA-IPA

0.1 1.94E-11 9.99E-16 2.10E-18 2.22E-09 3.65E-09
0.3 4.04E-12 2.20E-10 3.88E-14 1.31E-06 1.49E-06
0.5 3.16E-09 8.29E-08 1.40E-11 2.54E-05 2.89E-05
0.7 5.56E-09 3.88E-06 7.47E-10 8.84E-16 3.92E-08
0.9 2.91E-08 6.43E-05 1.37E-08 2.37E-13 6.53E-07

Problem II
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IPA

0.1 7.78E-06 3.53E-06 4.49E-07 4.66E-07 9.57E-07
0.3 3.43E-06 4.63E-06 2.43E-06 6.81E-07 5.75E-06
0.5 3.71E-06 6.49E-06 2.55E-06 7.66E-07 2.32E-06
0.7 4.13E-06 7.25E-06 3.73E-06 2.35E-06 6.39E-06
0.9 2.40E-05 3.43E-05 3.45E-06 4.49E-06 8.18E-06

GA

0.1 3.73E-12 4.75E-12 3.25E-12 8.45E-09 3.27E-06
0.3 2.74E-11 2.86E-11 2.53E-11 8.58E-11 4.63E-06
0.5 2.72E-11 3.44E-11 2.73E-11 4.79E-09 5.48E-06
0.7 6.39E-11 9.80E-11 4.64E-11 7.83E-09 8.59E-06
0.9 2.76E-10 3.23E-10 2.87E-10 2.32E-08 2.38E-05

GA-IPA

0.1 2.73E-05 5.19E-05 2.63E-05 3.43E-10 6.73E-10
0.3 3.43E-05 8.29E-05 3.74E-05 3.31E-10 2.18E-09
0.5 3.29E-05 7.49E-05 3.78E-05 6.63E-10 2.54E-09
0.7 4.54E-05 2.67E-04 5.82E-05 8.45E-10 3.34E-09
0.9 6.68E-05 2.37E-04 6.42E-05 2.27E-09 5.78E-09

Fig. 7　Graphical view of fitness value, MAE and RMSE for 
100 independent runs in case of problem I

Table 10　 Exact and proposed results in case of problem II

e
% of runs with fitness

MAE
% of runs with MAE

IPA GA GA-IPA IPA GA GA-IPA
10−04 00 00 00 10−04 61 10 10
10−05 00 09 00 10−05 03 00 01
10−06 00 00 00 10−06 19 00 17
10−07 00 00 00 10−07 13 00 66
10−08 00 00 00 10−08 02 00 06
10−09 27 00 00 10−09 01 04 00
10−10 53 01 91 10−10 01 17 00
10−11 20 07 09 10−11 00 11 00
10−12 00 06 00 10−12 00 01 00
10−13 00 00 00 10−13 00 57 00
10−14 00 04 00 10−14 00 00 00
10−15 00 63 00 10−15 00 00 00

’eSDDE’, as shown in Fig. 8(a) and Fig.  8(b).  IPA  yields  
lower  fitness  ’eSDDE’ with  variations,  while GA and GA-IPA 
consistently deliver results with low MAE, as seen in Fig. 8(c). 
Moreover, GA and GA- IPA also exhibit consistent convergence in 

terms of RMSE, as demonstrated in Fig. 8(d). Furthermore,

Fig. 8　Graphical view of fitness value, MAE and RMSE for 
10 independent runs for problem II

we conducted 100 independent runs to determine the per-
centage of convergence for the fitness function ’eSDDE’ and the 
MAE using neural network models as described in Equations (14) 
and (20). This was done to ensure the reliability of our proposed 
techniques. The results of the percentage of convergence for the 
three designed solvers are presented in Table 10. For problem I, 
we observed that the values of the fitness function ’eSDDE’ and 
MAE that meet the specified criterion fall within the range of 10−15 
to 10−04. From Fig. 9(a)-(b), it is evident that the hybridization of 
GA-IPA consistently converges in all runs of the algorithm, while 
the GA and IPA approaches struggle to achieve the required fitness 
value. The percentage of convergence for these two approaches is 
lower across all one hundred independent runs. The convergence 
analysis, conducted through statistical analysis over one hundred 
independent runs  for all three solvers, is presented in Fig. 9 and 
Fig. 10. Detailed numerical outcomes are provided in Table 10 and 
11. Overall, the results demonstrate that the proposed approach, 
utilizing ANNs based differential difference models optimized 
with the hybrid computing technique GA-IPA, delivers the most 
accurate and consistent convergent results compared to the other 
algorithms.
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The results obtained from all three solvers demonstrate that 
the fitness value ’eSDDE’ and MAE, which satisfy the adapted cri-
terion, fall within the ranges of 10−11 to 10−06 for problem II, as 
presented in Table 11. From Fig. 10(a)-(b), it is evident that the 
GA solver consistently achieves convergence across

Fig. 9　Convergence analysis of fitness ’e’ and MAE for 
problem I

Table 11　 Results of Convergence analysis of SDDE for prob-
lem II

e
% of runs with fitness

MAE
% of runs with MAE

IPA GA GA-IPA IPA GA GA-IPA
10−06 047 100 000 10−06 054 000 000
10−07 008 000 000 10−07 019 000 000
10−08 029 000 000 10−08 018 000 010
10−09 010 000 010 10−09 004 000 000
10−10 001 000 090 10−10 003 000 090
10−11 005 000 000 10−11 002 100 000

all runs of the algorithm. In contrast, the IPA and GA-IPA 
approaches are inadequate in achieving the required fitness val-
ue and exhibit lower convergence percentages in all one hundred 
independent runs. The numerical computations and simulations 
were carried out on an HP Premier Experience system with a CPU 
running at 2.40GHz, equipped with 2.00 GB of RAM, and an In-
tel(R) Core(TM) i3-2370M processor. The program was executed 
using MATLAB version R2015a.

Fig. 10　Convergence analysis of fitness ’e’ and MAE for 
problem II

6.　CONCLUSION
In this section, the concluded remarks on the basis of numer-

ical simulations and results are as follows:
• A new artificial intelligence based numerical solution is intro-

duced to solve Initial value problems of linear singular differ-
ential difference equation by using log-sigmoid function as an 
activation function. We presented homogeneous and non homo-
geneous models of SDDEs optimized with IPA, GA and hybrid-
ization GA-IPA with the knacks of ANNs.

 • Comparison of the results with the exact solution shows that the 
AEs are in the ranges of 10−07  10−10, 10−05→10−08 and 10−05 

10−12 for IPA, GA and hybridization of GA-IPA respectively; 
whereas the AE of aforementioned results in literature BMM 
has order 10−04→10−06 in problem I. And the results of AEs for 
three proposed solver are in the ranges of 10−05→10−06, 10−05 
→10−06 and 10−09→10−10 respectively for problem II, whereas 
the VIM has different values of absolute error at every step size, 
are in the ranges of 10−05→10−16. But AEs of proposed scheme 
gives consistent results.

• The numerical results and simulations of designed scheme is 
well-defined and predictable approach to calculate the numeri-
cal solution of linear SDDEs. The numerical results proved the 
accuracy of the scheme by matching the approximate results and 
exact solution up to 4-5 decimal places. The graphical represen-
tation of solutions obtained by proposed scheme and the exact 
solution also overlap each other.

• Statistical analysis of the proposed scheme has been executed 
based on 100 independent runs to certify the precision and reli-
ability of the design scheme. Feed forward ANNs log-sigmoid 
function give significant convergence in 100 independent runs 
for three proposed approaches IPA, GA and hybrid combination 
of GA-IPA. Moreover, it is found that in hundred independent 
runs hybrid approach GA-IPA provides better convergence per-
centage i.e., 95% on the basis of fitness value

ϵ ≤ 10−08 for problem I, whereas GA provides 95 to 98% bet-
ter convergence for fitness value

ϵ ≤ 10−06 for problem II.
The accuracy, convergence of the designed unsupervised 

ANN model for singular differential difference system can be im-
proved by use of the new competency of nature inspired comput-
ing technique based on PSO and its integration with efficient local 
search technique. Additionally, exploitation of strength of optimi-
zation of evolutionary computing through differential evolution 
hybrid with local search method- ologies can be a good alternative 
to the improve performance of the singular differential difference 
system in term of precision, reliability, robustness and stability.

This research can be a good alternate with other activation 
functions as Mexican hat, tangent sigmoid, Wavelets hat, radial 
basis etc., to deal with the SDDEs.
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