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Investigating Differential Difference Equations: An In-Depth Review
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ABSTRACT

Differential difference equations serve as mathematical models for a wide range of physical phenomena. Differential difference 
equations have a broad spectrum of applications spanning various disciplines. These equations find diverse applications in a wide 
range of fields, including epidemiology, information technology, control theory, finance, population dynamics, and stochastic 
processes. Their adaptability in modeling systems characterized by a blend of continuous and discrete behaviors renders them an 
invaluable mathematical framework with applicability spanning numerous domains in science and engineering. This study provides 
a comprehensive review of existing literature pertaining to periodic solutions, entire solutions, asymptotic analysis, and numerical 
approaches for differential difference equations. The pri- mary objective of this research is to analyze the various problems and 
methodologies employed in the extant literature. Notably, significant advancements in this field have been made since 1946. As a 
result, this study aims to encompass the research conducted by various scholars from 1946 to 2023.
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1.　INTRODUCTION

Differential-difference equations (DDEs) are crucial in the 
modeling of various physical phenom- ena, including electrical 
network currents, vibrations in particle lattices, and pulses in 
biological chains, as cited in reference [1]. While difference 
equations involve complete discretization, DDEs are characterized 
by a partial discretization of some or all of their variables, while 
typi- cally maintaining continuous time. Differential equations 
are a common approach for describing a wide range of physical 
problems. However, when dealing with situations where space or 
time exhibits discontinuities, the conventional differential model 
may no longer be applicable. El- Naschie’s E-infinity theory 
suggests that both space and time can exhibit discontinuities. 
While time can often be approximated as continuous in many 
practical applications, at the nanoscale and even smaller scales, 
numerous problems exhibit discontinuities. In these scenarios, 

the use of differential-difference models proves to be highly 
effective, as highlighted in references [2] and [3]. Furthermore, 
additional applications of DDEs can be found in fields such as 
textile en- gineering and the study of stratified hydrostatic flows, 
as demonstrated in references [4] and [5]. Other applications of 
DDEs and their systems appear in many real life phenomenon 
in control theory, engineering, physics, economics, engineering, 
astronomy, chemistry, mechanics, biology, electrostatics, potential 
theory etc., [6–18].

Therefore, many researchers always curious to determine 
the solution of DDEs. This review will explore the endeavors of 
various authors who have studied into the realm of solving DDEs. 
Their efforts span both the analytical and numerical approaches, 
and we will examine how different researchers, across different 
years, have made significant contributions to this field by seeking 
solutions to DDEs through various methods.

The models of DDEs considered in this review shown in the 
flow diagram in Figure 1.
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2.　MODELS OF DIFFERENTIAL DIFFERENCE 
EQUATIONS
In [19], Cooke discussed the presence and consistency of 

periodic solution for the following equation:

    (1)

We assume that the following conditions are satisfied:
(i)	 All of the characteristic equation’s roots

rer − ber − a = 0,                                                                   (2)

has real negative elements.
(ii)a, b, n, and ν represent real numbers with ν being greater 

than 0, while s stands as a real variable, and s is a real.
(iii)The function f(s) is a real and continuous function, 

defined for all values of s, and it exhibits a periodicity of 1, with 
its mean value over one period being equal to zero.

(iv)The function g(x, y, s) is real and continuous for all values 
of (x, y, s) within a period of 1 in the variable s, and it also satisfies 
the condition g(0, 0, s) = 0. Furthermore, for each ζ > 0

there corresponds a positive number△, depending on ζ but 
not on s such that

       (3)

∀ real s and ∀ x1, x2, y1, y2 for each |x1 − x2| < △ and |y1 − y2| 
<△.

Cooke inaugurated the theorem with the statement as:
Theorem: If the above stated conditions are fulfilled, there ∃ a 

+ve constant η, depending on a, b, g, and f but not on n or ν, such 
that if,  < η, then equation eq. (1) posses a continuous,

periodic solution p(s) of period　. Furthermore, ∃ a +ve 
constant ϱ that does not depend on either n or ν, and this constant 
satisfies the following conditions:

                                                                     (4)

∀s. The solution p(s) is asymptotically stable and in fact, 
∃ a +ve number δ that is independent of both n and ν. This δ 
ensures that any solution x(s) of eq. (1) which adheres to the following 
conditions:

                                                                (5)

will also satisfy

                                                      (6)

In [20], the work of Farnell et al. on the system of differential 
equations directed towards the DDEs by the above stated theorem. 
Bellman [21], Cooke [22] , Brownell [23], and Wright in several 
publications, including one cited as [24], conducted extensive 
investigations into the stability and asymptotic characteristics of 
solutions for DDEs similar to equation (3), with the distinction 
of lacking a forcing term. The methods practiced in [19] are taken 
primarily from [20] and [21]. In [25], Jones consider the non-linear 
DDE as:

                                  (7)

If we assume β is a positive real parameter and let ψ be a 
bounded, real-valued, a Lebesgue- integrable functional specified 
on the range of values (-1, 0] and the function g in the following 
manner: for values of t within the interval (-1, 0], g(t) is equal to 
ψ(t), and for other values of t,

                   
(8)

for t > 0 is specified as the solution of (7) related to the initial 
function ψ. eq. (7) finds relevance in diverse applications, such as 
modeling fluctuating populations of organisms, as referenced in 
[26]. As noted in [27], it also occurs in the context of probability 
techniques for prime number distribution analysis. Moreover, as 
noted in [28], this equation is found in the context of demonstrating 
control systems, and analogous equations are employed in business 
cycle-focused economic research.

In [29], Wright has determined the presence and uniqueness 
of the solution of eq. (7) related to each initial function and 
presented the equation

               
(9)

from where g can be subsequently determined over unit 
intervals. He also established the trivial solution’s asymptotic 
stability in interval 0 ≤ β ≤ 3/2, the persistence of constrained

oscillatory solutions that are undamped for β＝>(r/2) and 
many other stimulating results together with various extensions 
for solutions. In [30], Kakutani and Markus demonstrated the 
theories isolating solutions’ stiff asymptotic behaviour for α in (0, 
e−1) and the apparent oscillating behaviour for a > e−1. Moreover, 
the author’s contribution in [25] is regarded with the undamped 
oscillatory solutions of eq. (7) which happen for β > (     ).The author 
showcased the existence of periodic solutions and elucidated several 
of their properties by presenting refined constraints on amplitudes 
and outlining limitations on the behavior of these solutions. He also 
computed numerical results by using a computer, which proved the 
accuracy of solutions for a fixed periodic form of β > (  ).

In [31], Brauer consider the linear DDE with constant 
coefficient as:

                                              (10)

and b ̸= 0 for the explicit dependence on delay T.
eq.(10) has a characteristic equation having all roots with 

negative real parts.The characteristic equation, which is derived 
from the coefficients of the differential difference equation and incor- 
porates the delay parameter T, plays a crucial role. The roots of 
this characteristic equation are utilized to determine the asymptotic 
behavior of the solutions. This research holds valuable significance 
in precisely studying the behavior of solutions for nonlinear first-
order DDEs in the vicinity of a stable equilibrium. The applications 
of this research find relevance in addressing control and biological 
problems.

In [32, 33] Brayton studied the neutral DDE as:

                            (11)

where r = , eq. (11) based on the lossless broadcasting 
lines which are associated with switching circuits. Different 
papers, such as those referenced in [34] and [35], have presented 
the necessary conditions for the presence of periodic solutions 
in equation (11), specifically when i = 0. But only a few papers 
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for the cases k ≠ 0 exist in the literature that investigates whether 
periodic solutions exist of eq. (11). In [36], Chen consider the more 
general form of the class of neutral DDE than (11) and investigated 
if the equation below has any periodic solutions:

                    (12)

For a positive value of τ , a real number denoted as a, and a 
continuous function represented as g(x, y)

In [37], Stamov and Stamova consider the impulsive DDE:

	
                                                  (13)

where Rm, be the m-dimensional Euclidean space with 
norm  , let Ω be domain in Rm, Ω ≠ ϕ, h > 0, s0  R, ϕ0 

 C [[s0 −h, s0], Ω] , R+ = [0, ∞). Where f : (s0 , ∞)×Ω×Ω → Rm, 
τl : Ω → (s0, ∞), Il : Ω → Rm, l = 1, 2, ...,∆z(s) = z(s + 0) − z(s − 
0). In this study, the author established the necessary conditions 
for the presence of integral manifolds in impulsive DDEs that 
incorporate variable impulsive perturbations. This was achieved 
by using auxiliary function that are component-wise continuous 
and comparable to the conventional Lyapunov’s function.

In [38], Chou et al. consider the DDE of the form:

  (14)

where s represents the continuous time variable, and v is a 
differential function with respect to time variable s Additionally, 
Zh is defined as the infinite uniform spatial grid with grid points 
at intervals of h such that Zh = y = ih, i = 0, ±1, ±2, . . ., where h 
is a very small step size. Lastly, I is a differential function of 
various variables, including s, y, v ( y − ch), v (y + dh). The authors 
have introduced a generalized conditional symmetry method in 
their study to handle nonlinear DDEs that encompass continuous 
dependent variables and are relevant for both continuous and 
discrete independent variables. Furthermore, they extended the 
application of the generalized conditional symmetry method from 
nonlinear partial differential equations to DDEs. As a result of their 
efforts, they successfully derived exact solutions of DDEs.

In [39], Suzuki studied retarded system of nonlinear DDEs 
for boundary value problem as:

  (15)

                     (16)

where l1, ....li and m have positive values that satisfied l := 
maxl1,......, li < m

In [40], Urabe determined the existence theorem of multipoint 
nonlinear ODEs boundary value

problems and presented a method for estimating an exact 
solution by employing chebyshev polynomials. In [39], the author 
extended the work of M. Urabe [40] to nonlinear DDE (15) and 
(16). The author proved the ’theorem-1’ on the based of the results 
proved by one of the researchers Kurihara and Yui [41]. It delivered 
that the presence of the unique exact solution could be always 
guaranteed toward the boundary value problems (15) and (16) 
that satisfied the isolated conditions through examining different 
hypotheses against obtained approximate solutions. Moreover, the 

author proved ’theorem-2’ which delivered that the desired precison 
of approximate solutions can be determined by calculating the 
finite chebyshev polynomial series for exact solution toward the 
boundary value problems (15) and (16) that satisfied the isolated 
conditions.

In [42], Muravnik consider the parabolic DDEs of Cauchy 
problem in R1 × (0, ∞)：

                                    
(17)

where c, h ∈ Rn. The author constructed the fundamental 
solution as well as integral description of the classical solution of 
problem (17).

In [43], Kadalbajoo and Sharma studied the singularly 
perturb DDE as:

  (18)

on [0, 1] with boundary conditions

      (19)

In reference [44], the focus is on the numerical handling of 
2nd order singularly perturbed DDEs having small shifts. In this 
context, ϵ represents a small parameter, and it is required that 
0 < ϵ ≪ 1. Additionally, there are small shifting parameters η and 
δ, with the conditions that 0 < η ≪ 1 and 0 < δ ≪ 1. And β(x), γ(x), 
g(x), ψ(x), and ϕ(x) are all smooth functions involved in the analysis. 
In [43] K. K. Sharma and M. K. Kadalbajoo prolonged the work to 
the problems having solution with rapid oscillations. They used 
the Taylor series to approximate the shifted term and then employ 
the difference scheme, yielded singular perturbation parameters of 
small shifts. They also discussed the consistency and convergence 
of the technique. The impact of small changes of the oscillatory 
solution was demonstrated using a variety of numerical examples. 
In [45] Sezer and Gulsu gave Taylor matrix method of higher order 
general Fredholm integro linear DDE

  (20)

having mixed conditions

  
(21)

the solution is demonstrated in Taylor polynomial as

               
(22)

Where, the functions Pli(r), Kjk(r, t), and g(r) that posses a ≤ 
r, t ≤ b and c  , cs, c, and τli, τjk are appropriate coefficients and ym 

(c) are coefficients of Taylor to be resolved. The authors de- vised 
the Taylor matrix method and employed this technique to provide 
an approximate solution for the aforementioned equations, 
particularly when they involve mixed boundary conditions.

They used Taylor polynomials as a key component of their 
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approach. The accuracy of the pro- posed method is validated 
through some numerical examples solved by using MAPLE. They 
calculated absolute error to prove the accuracy.

In [46] Kadalbajoo and Sharma provided a numerical solution 
for singularly perturbed nonlinear DDEs featuring a negative shift

ϵu′′(x) = G (x, u(x), u′(x − η)).                                             (23)

This will format the equation properly and label it as (23). on 
(0, a) based on the boundary conditions

u(x) = ψ(x), −η ≤ x ≤ 0,  y(a) = α,                                     (24)

where 0 < ϵ ≪ 1 and η is the shift. They presented the numerical 
treatment for eq. (23) and eq. (24). The solution technique is divided 
into two sections based on the size of the shift. They employed Taylor 
series to manage the term related to o(ϵ) and devised a specific 
mesh technique to address the term associated with o(ϵ).

In reference [47], Patidar and Sharma studied a numerical 
approach for handling singularly perturbed DDEs that incorporate 
both delay/advance arguments, much like the approach de- scribed 
in reference [43]. They introduced a novel category of operator 
finite difference schemes through the utilization of nonstandard 
finite difference methods. They presented noteworthy findings 
concerning problems with constant or variable coefficients, even 
when the parameters η and δ are set at η = δ = 0.5ϵ. Furthermore, 
they demonstrated that these nonstandard methods consistently 
produced ϵ − uniform results across a range of parameter values 
for η and δ.

In [48] Arikoglu and Ozkol consider the DDE in general form

    (25)

under the conditions

                      (26)

The authors gave the solution of DDE by establishing new 
theorems by differential transform method. The general form of 
these theorems covered an extensive range of DDEs, either linear 
and nonlinear as well as with constant and variable coefficients.  
They transformed eq. (25) and eq. (26) into a recurrence equation, 
which was subsequently employed to determine the solutions of 
an algebraic systems using the coefficients of the power series 
solutions. To illustrate the effectiveness and resilience of their 
method, as well as to demonstrate the relevant theorems, they 
provided examples.

In [49] Gülsu and Sezer consider linear DDE with variable 
coefficients that involving negative shifts in the derivative term

 

under mixed type conditions

    
(27)

i = 0(1)(m − 1), p ≤ d ≤ s and the way in which the solution 
is demonstrated

      
(28)

The expression refers to determining coefficients, denoted as 
u(k) d for k = 0, 1, . . . , K, in a Taylor polynomial of degree K centered 
at the point z = d. The functions P(m)(z), P* (q) (z) , and g(z) are 
defined within the interval p ≤ z ≤ s, and the constants pim, sim, dim, 
and νi are real coefficients associated with the problem at hand. 
In reference [50], Fredholm integral equations were successfully 
addressed using the Taylor method. Furthermore, Sezer extended 
this method to tackle a wider range of problems, including Fredholm 
integro-differential equations’ solution (as seen in reference [51]) 
and 2nd order linear differential equations (refer to references [52] 
and [53]). In another work, reference [49], the authors introduced 
the Taylor polynomial method, which involves employing trimmed 
Taylor expansions for the functions within the context of DDEs 
and subsequently incorporating their matrix representations into 
the equations. Therefore, the unknown Taylor coefficients might 
be located by solving the resulted matrix equation.

In [54], Sezer and Dascioglu consider linear DDE with 
variable coefficients

        
(29)

under mixed conditions

                                              
(30)

and solution is expressed as,

                         
(31)

                                     (32)

here P(im)(x) and g(x) containing appropriate derivatives on 
s ≤ x ≤ d and a  , aq, a and τim are appropriate coefficients. The 
authors are constructed Taylor method and gave the solution of 
eqs. (29) and (30) by using this method. They also demonstrated 
the admissible characteristic of the method by presenting different 
numerical examples.

In [55], Zonghang Yang and Y. C. Hon gave exact travelling 
wave solution of DDE by using hyperbolic cotangent function 
method. By extending the hyperbolic cotangent function method, 
they enriched the range of exact solutions available for nonlinear 
DDEs, introducing distinct variations. The intended method is 
tested by finding the solution of three different types of DDEs, 
the mKdV lattice, Toda lattice and the Volterra lattice in modified 
form that have been discretized. Moreover, they used correlation 
features of hyperbolic functions and triangular functions for 
interpreting periodic wave solutions of triangular type.

In [56], Wang, Zoub and Zhang studied the Volterra equation

                                                (33)

along initial condition as
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                                                                             (34)

contains the exact solutions

                                                                 (35)

the homotopy analysis method, initially limited to integral 
differential equations, has been expanded by the authors to address 
non-linear DDEs. They utilized this extended method to tackle 
equations (33) and (34), demonstrating its effectiveness and 
significant potential. Additionally, they established a convergence 
theorem and provided a succinct analysis of the results obtained.

In [57] Li et. al consider the Toda equation of (2+1) 
-dimensions

                                         (36)

here function called zndepends on x and t, and zn,xt ≡　　　
　Based on the geometric composition of differential equations by 
Cartan, Estabrook and Harrison proposed a geometric approach 
for the symmetry of differential equations. The authors interpreted 
the DDE sym- metries and expanded the research of Estabrook and 
Harrison. The Lie symmetry properties of the (2+1)-dimensional 
Toda equation were examined using the discrete exterior 
differential technique.

In [58], Ma et al. formulated symmetrical Fibonacci tane 
based on the sine and cosine symmetric Fibonacci. They created 
an approach to obtain the exact travelling waveform solution of the 
DDE by utilising the symmetrical Fibonacci tane functions feature. 
They developed remarkable explicit as well as exact traveling 
wave solutions by employing this method on discrete non-linear 
Schrodinger problem, Toda lattice of (2+1) dimensions and 
generalized Toda lattice.

In [59], Kadalbajoo and Kumar consider the singularly 
perturbed DDE having negative shift in its first derivative

                      (37)

along with boundary conditions

            (38)

Here ’ζ’ is a small argument with the condition that 0 < ζ ≪ 1, 
and η is a small shifting parameter,fulfilling the requirements that 
0 < η ≪ 1. The functions p(y), q(y), r(y), ϕ(y) are all smooth, and the 
constant β is also part of the equation. They employed a fitted mesh 
approach to create a segmented mesh that maintains uniformity 
while being compressed in the vicinity of the boundary layers. 
In conjunction with the fitted mesh, they utilized the B-spline 
collocation approach.An approximate 2nd order parameter 
homogeneous convergence was shown by this method. The effect 
of a minor delay η upon the boundary layer was also covered by the 
authors. Furthermore, they validated the method’s effectiveness 
through various illustrative examples. These examples also 
showcased how the delay’s argument size and the delay term’s 
coefficient influence the layer behavior of the proposed solution.

In [60], Zou, Wang and Zong consider the algebraic DDE in 
general form

  (39)

Here, non-linear differential operator is represented by N , and 

both ’n’ and ’t’ serve as independent variables. The functions un(t) 
are represented in vector form. The authors introduced a novel 
method, the differential transform Padé approximation method, 
for solving DDEs. They extended the traditional differential 
transform method and incorporated the Padé approach. By 
combining these techniques, they aimed to broaden the convergence 
region of the series solutions. Their approach yielded successful 
results, particularly in obtaining solitary-wave solutions for 
the discrete KdV and mKdv equations. A comparison between 
the results derived from their method and the exact solutions 
demonstrated the robustness and reliability of their approach. In 
[61], Zhang et. al consider a system of N polynomial of non-linear 
DDEs

  (40)

Zhang et. al [62, 63] introduced a generalize (  ) expansion 
approach to promote and prolong the findings of Wang et al. [64] 
for the solution of variable coefficient equations as well as high 
dimensional equations. The authors in this study, prolonged 
the ( ) expansion approach to handle non-linear DDEs. They 
demonstrated the efficacy and benefits of the method by taking two 
discrete non-linear lattice equations using symbolic computation, 
obtained trigonometric and, hyperbolic function solutions as a 
consequence. some obvious solutions along with singular traveling 
wave and kink solitary wave solutions are retrieved, even when the 
parameters are selected as special values.

In [65], Liu consider the lattice equation in general form

  (41)

The author developed exponential functions rational 
expansion scheme and gave exact traveling wave solution of non-
linear DDEs. He merged the hyperbolic tangent method and made 
its deducement. He achieved several exact solutions by applying 
this method to non-linear DDEs like discrete mKdV lattice 
equation, Langmiuir lattice and Hybrid lattice equation.

In [66], Gulsu, ozturk and Sezer consider the mixed linear 
integro DDE

   (42)

under the conditions

                     
(43)

here, y(s) represents an unknown function, while Pl(s), P*r, 
f (s), K(s, t) are known functions specified on a specific interval. 
Additionally, there are constants denoted as ail, bil, cil, and ν 
that are appropriately chosen. The solutions are presented in the 
following form:

                                                      
(44)

In the given equation, the coefficients aj are considered as 
unknown Chebyshev coefficients, and a positive integer M is chosen 
such that it satisfies the condition M ≥ n. The authors developed a 
Chebyshev collocation technique that allows mixed linear integro-
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DDEs to be solved numerically. The primary premise of this 
approach is the application of the Chebyshev expansion technique. 
By applying this approach, the mixed linear integro-DDEs, along 
with their associ- ated conditions, are transformed into a matrix 
equation, which is then equivalently expressed as linear algebraic 
systems. To validate the efficiency and reliability of their proposed 
approach, the authors conducted various numerical examples. 
These examples were executed using the computer algebraic 
system Maple 10.

In [67], Abbas Saadatmandia and Mehdi Dehghan consider 
the linear Fredholm integro DDE

   (45)

along with the conditions

  
(46)

the functions Pm(r), P*(n)(r), K(r, t), and g(r) are functions 
that are continous. Additionally, there are constants denoted as 
αim, βim, γim, νi that are appropriately selected. The problem’s 
spatial domain contains the point η. A higher order linear 
Fredholm integro-DDE was solved by the authors using Legendre 
polynomials. They extended the approximate solution using 
shifted Legendre polynomials along with unknown coefficients, 
by converting the problem into a set of linear equations. 
Subsequently, They used the tau approach in combination with 
operational matrices of derivative and delay to calculate the 
unknown coefficients related to shifted Leg- endre polynomials. 
A key component of their methodology was the tau technique, 
which was first developed by Lanczos [68] for ODEs and then 
expanded upon by Ortiz [69]. For more information on the tau 
method, references [70] and [71] are available, and for a deeper 
under- standing of Legendre polynomials, one can refer to [74] 
and [75]. To validate the accuracy of their proposed technique, 
they provided several examples and compared their results with 
those already established in the existing literature.

In [76], Hongfei Li, Keqin Gub gave discretized Lyapuno 
Krasovskii functional approach for linear system having multiple 
delays

                                       
(47)

 

      
(48)

here y(t) ∈ Rn, xj (t) ∈ Rmi. The delays li are all positive. Initial 
history might be expressed for any t0 ∈ R,

                                                                               (49)

                                        (50)

for ψ ∈ Rn and ϕi ∈ PC(li, mi). The current system’s state 
at time t can be represented as (y(t), x1(s1)t, x2(s2)t,......, xk(sk)
t) from which the system’s future expansion can be entirely 
determined. To address this, a discretized Lyapunov Krasovskii 
functional approach was presented by the authors.. This method 

yields stability conditions based on linear matrix inequalities 
for solving coupled DDEs with multiple delays. Further, this 
framework is also appropriate for the retarded type of time delay 
systems and remarkably reduced the cost of computations for a 
typical system.

In [77], Wang, Zou, and Zong initially employed the Adomian 
decomposition technique and Pade approximation for solving 
DDEs. They achieved an improved approximation by combining 
these two techniques. The method’s convergence was established 
by employing it to solve both the Volterra equation and the discrete 
mKdV equation. Furthermore, the results obtained using their 
proposed method were compared with exact solutions to validate 
their approach.

In [78], Kumar and Kadalbajoo presented a numerical 
treatment for solving the singularly per- turbed DDEs with 
advanced and delay terms having boundary layer

 (51)

where K = ρ×σ = (0, 1)×(0, R] and ∂K = K−K = {(0, r)∪(1, 
r)∪(x, 0) : 0 ≤ l ≤ 1, 0 ≤  r ≤ R}, in the plane of space time, for 
constant positive time R, associated with the interval conditions

   (52)

   (53)

and initial history y(l, 0) = y0(l), l  Ω. Here ’ξ’ is small 
argument and 0 < ξ  1, and η, δ are small arguments of order 
o(ξ). While the functions c(l), µ(l), ν(l), ρ(l), g(l, r), ψ(l, r), ϕ(l, 
r), y0(l) are independent of ξ and supposed to be smooth and 
bounded. They also considered the condition for some constant 
θ, µ(l) + ν(l) + ρ(l) ≥ θ > 0,  l  σ. The eq. (51) diminished to 
one parameter singularly perturbed differential equation for the 
case η = δ = 0. However, they were interested in two parameter 
problem, where the reaction terms include both the delay and the 
advance period.. The eq. (51) diminished to a singularly perturbed 
parabolic differential for the case η = δ = 0. The boundary layer 
depend upon the sign of c(l), for c(l) < 0 and c(l) > 0 the boundary 
layer that exists in the neighborhood of D0 and D+ respectively 
[79, 80]. They used Taylor’s series expansion for approximating 
the retarded factors and obtained singularly perturbed time 
dependent differential equation. They employed Rothe’s scheme 
and, the B spline collocation scheme derived from a Shishkin-type 
approach in the direction of space. This combination was utilized 
to approximate the singularly perturbed DDE. Using the standard 
implicitly finite difference method, parameters uniform numerical 
techniques were created within the framework of the approach. 
They exhibited the order of accuracy of the technique O(L−1 + 
M−2 ln3M ), and M represents the mesh points inside the spatial 
direction, whereas L denotes the mesh points in the temporal 
direction. To validate the proposed scheme, they demonstrated 
its consistent convergence by analyzing the numerical results. 
Additionally, they conducted a comparison with both an upwind 
finite difference scheme and a midpoint upwind finite difference 
scheme, utilizing a piecewise uniform mesh.

In [81], Suayip Yuzbasi gave numerical treatment for high 
order linear singular DDEs

 
(54)
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along with boundary conditions:

    
(55)

whereas αβγ, δβγ, aζγ, cζγ and λζ are limited set of constants; 
y(0)(l) = y(l) is unidentified funtion, and Pβγ(l), f (l) ∈ C(0, c), 
Pβγ(l), f (l) may be undefinable at the points l = 0 and l = c. In 
this study, the author developed numerical method for eq. (54). 
Using collocation points and Bessel polynomials, he translated 
the singular DDEs in the matrix equation. If the exact solutions 
are given as polynomials, then analytical solutions are obtained by 
using this method. He established the validity and competence of 
the presented approach by presenting some examples numerically 
and comparing them with the results in literature. Numerical 
results are calculated by using Matlab (R2008a).

In [82], Gepreel, Shehata gave rational Jacobi elliptic 
function scheme to solve nonlinear DDEs

                   (56)

Here µ, ν, ω are non-zero constants. The authors produced 
rational Jacobi elliptic solution for nonlinear DDEs by the rational 
Jacobi elliptic scheme. By applying the lattice equation, the 
proposed method is capable of yielding a range of exact solutions 
for nonlinear DDEs in mathematical physics. These solutions 
encompass hyperbolic function solutions and trigonometric 
function solutions, particularly in cases where the modulus m 
tends toward both 1 and 0.

In [83], Salih Yalcinbas and Tugce Akkaya integro DDE

    (57)

    (58)

where the functions Pm(x), P*(n)(x), K(x, t), and g(x) are 
known and defined within the interval a ≤ x, t ≤ b. The constants 
αim, βim, γim, νi can be either complex or real numbers. The function 
y(x) is the unknown quantity. The authors introduced Boubaker 
polynomials based collocation approach to find solutions for 
Riccati DDEs subject to mixed conditions. They compared the 
results obtained with those available in the existing literature to 
demonstrate the efficiency of the method.

In [84], Yuzbasi gave a numerical treatment for DDE of 
Riccati type

   (59)

along the conditions

                                                             (60)

Here the function g(r) is unknown, and the known functions 
are P (r), Q(r), R(r), S(r) in interval a ≤ r ≤ b; p, q, α, m, β, γ, µ, ν and λ 
are constants belong to complex or real numbers. The approximate 
solution for equation (59) with mixed conditions was achieved 
through a collocation approach relying on the Bessel functions 
of the 1st kind. Error analysis, as outlined in references [85] and 

[86], was employed for assessment. To affirm the effectiveness and 
reliability of their method, the authors presented several numerical 
examples and conducted comparisons with other methods from 
the existing literature. The numerical results were computed using 
Maple 9.

In [87], Gokmen and Sezer presented the Taylor collocation 
approach for solving the high order linear DDEs

  
(61)

along with mixed conditions as

    
(62)

In this context, the unknown functions are denoted as 
yα(r), Pαγ(r), and gα(r). The functions Pαγ(r) and gα(r) are known 
and defined within the interval a ≤ r ≤ b. Additionally, there 
are constants aαβ, bαβ, cαβ, and νkβ that have been appropriately 
selected. The authors introduced a Taylor collocation approach, it 
is used to solve systems of higher order linear DDEs and relies on 
Taylor polynomials. This approach transformed systems of DDEs 
and associated conditions into matrix equations, incorporating 
unknown Taylor coefficients through the utilization of Taylor 
collocation points. The authors introduced a Taylor collocation 
approach based on Taylor polynomials for the solution of linear 
higher order DDEs. By applying this approach, they were able to 
derive a novel set of equations from the matrix equation, which 
corresponded to linear algebraic systems. To demonstrate the 
validity and effectiveness of their proposed method, they presented 
several numerical examples and compared their results with other 
techniques available in the existing literature.

In [88], Polyanin, Zhurov established exact solution of non-
linear DDE of incompressible viscous fluid

                                    
(63)

The authors applied a finite relaxation time approach 
to calculate exact solutions for nonlinear DDEs describing 
incompressible viscous fluid behavior. These results were then 
used to address several hydrodynamic problems. The fluid flow 
was characterized by longitudinal periodic oscillations around a 
rigid plane, considered as one-dimensional. In contrast, the flow 
near the attached porous plate, which involved a pressure gradient, 
was analyzed as two-dimensional.  In addition, the investigation 
examined problems pertaining to the hydrodynamic volatility of 
these solutions and methods for improving the fluid DDEs and 
the corresponding heat and diffusion equations. The presented 
modified relaxation fluid model holds the potential to explain the 
onset of turbulence under certain circumstances.

In [89], Aslan consider the fractional type DDE

                                       (64)

Here vn(t) = v(n,t); n  Z the nth particle’s position of the 
equilibrium position. ChatGPT The author employed an extended 
simplest equation scheme to solve fractional-type DDEs. Applying 
a real discrete Miura transforming, they studied the discrete KdV 
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formulation and systems associated with well-known self-dual 
network difficulties. Utilizing symbolic calculations, the author 
derived various kinds of exact solutions, including trigonometric, 
rational, and hyperbolic solutions. The development of numerical 
systems may benefit greatly from these discoveries as a foundation. 
In [90], Stevic, Diblik and Smarda consider systems of DDEs

  (65)

Here the variable r belongs to the real numbers, and the 
matrices A, B, and C are all real (n×n) matrices. The function 
f is defined over the real numbers and maps to Rn × (Rn)3 → R. 
For equation (65), the authors developed adequate criteria 
for determining the presence of a periodic C1 solution. They 
also explored the presence of a parametric family of solutions, 
characterized by ’n’ parameters, which approach zero along with 
their first derivatives.

In [91], Aslan consider the time fractional DDE

                        (66)

The author has introduced an analytical method for solving 
equation (66) using Jumarie’s modified Riemann-Liouville 
derivative with a time order of β. In this equation, the dependent 
variable yn is a function of y(n, r), where n belongs to the set of 
integers Z, representing a lattice variable. The study employed 
this approach to explore time-fractional DDEs with a rational 
description using symbolical computation. He demonstrated a 
rational, trigonometric, and hyperbolic type of exact solutions by 
giving three different examples of eq. (66) and its system.

In [92], Wen and Wang consider the non-linear Schrodinger 
DDE

                                                    (67)

They formulated conservation laws and Darboux 
transformation with N folds for the non-linear Schrodinger DDE 
depends on its Lax pair. The obtained Darboux transformation is 
used for deriving odd soliton solutions in the form of a determinant. 
The inelastic interaction phenomena between ’3’ solitons for the 
eq. (67) are graphically demonstrated.

In [93], Guo et. al consider the DDE

   (68)

The authors established the homoclinic solutions to the DDE. 
The authors introduced a variational framework for eq. (68), 
incorporating periodic boundary value conditions. The associating 
theorem for the existence of homoclinic solution is considered. 
The supporting Ambrosetti Rabinowitz growth condition is proved 
for the 2nd existence result of eq. (68).

In [94], Jun Shena and Wei Xing Zheng consider the linear 
coupled DDE along with time fluctuating delays

                                            (69)

                                        (70)

here x(l) ∈ Rm, y(l) ∈ Rn. The time fluctuating delay τ(l) is 
supposed to be bounded and continuous i.e., 0 ≤ τ(l) ≤ τ τ some +ve 
constant. The initial condition regarding system (69) is presented 
by x(0) = ϕ, y(l) = ψ(l); (l ∈ [−τ,0)) and ϕ ∈ m and ϕ ∈ PC([−τ, 
0), n).

The asymptotic stability of a particular class of eq. (69) among 

positive internal property is analyzed. Explicit characterization of 
the positivity of eq. (69) is discussed. The asymptotic property 
of their case trajectories originating from suitably taken initial 
conditions and entrywise monotonicity depend on the positivity (69) 
including constant delays are examined. Moreover, the comparison 
made between the time varying system with delay and analogous 
constant delay system. It is observed that the asymptotical stability 
of an internally +ve coupled DDEs relies on the delay free system.

In [95], Geng et. al gave solution of singularly perturbed 
DDE numerically with delays

 (71)

  (72)

This code separates the equations and aligns them using the 
align environment while maintaining proper spacing and alignment. 
here 0 < δ ≪ 1 and η is a parameter with small delay, η = O(δ), a(t), 
b(t), g(t) are smooth functions. They demonstrated the numerical 
solution that displaying the behavior of boundary layer for eq. (71). 
For the solution of eq. (71) the reproducing kernel scheme shown in 
the already existing literature is not adequate. The authors refined 
the reproducing kernel method to get an authentic estimation of 
considered equation under discussion.

In [96], Prakash et. al consider the nonlinear fractional DDE

 (73)

along with initial conditions

                                                                   (74)

here he Caputo fractional derivative is D zn (r) of the 
function and R represent the remainder term, N [zn, zn−i, zn+i] is 
the nonlinear term. The authors presented a modified He Laplace 
approach for solving eq. (73) with space and time variable. The 
authors presented a modified He Laplace approach for solving 
eq. (73) with space and time variable. Laplace transforms method 
and the fractional- homotopy perturbation approach is combined, 
and modified He Laplace method is developed. He’s polynomials 
could be used to transform the nonlinear terms. The proposed 
scheme had been successfully applied to the discrete modified 
KdV and modified Lotka Volterra equations. A rapidly convergent 
series is obtained by employing the present scheme.

In [97], Balci and Sezer consider the linear Fredholm integro 
DDEs having constant arguments as well as variable coefficients

   
(75)

along with mixed conditions as

  
(76)

Here, the known functions are Pik(r), Klt(r, l), and f(x), all 
defined within the interval 0 ≤ r,l ≤ b < ∞. Additionally, there are 
various constants denoted as τik, αik, δj, dij, and cij. The objective 
is to find the unknown function y(r). The authors have presented 
a numerical approach for solving equation (76) while considering 
initial boundary conditions. To solve this equation, they employed 
a decomposition method that transforms it into a system of 
algebraic equations. This transformation was achieved by using 
Euler polynomials and selecting appro- priate collocation points. 
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Moreover, the authors performed an error analysis with respect to 
the residual function pertaining to the solution technique.

In [98], Kurkcu consider integro DDE

    (77)

                                
(78)

Here the known function are Pik(r), f (x), Kl (r, t), ϕ(r), Km(r, 
t) defined in the interval −∞ < b ≤ r , t ≤ c < ∞; bik, cik , ηi are 
appropriate constants, and the function z(r) is unknown. They 
presented a numerical treatment for linear integro DDEs having 
variable coefficients along with the mixed conditions. An error 
analysis approach is employed in the study to evaluate the validity 
of the numerical approach with a focus on the residual functions.

In [99], Ye et. al consider generalized form of DDEs

                   (79)

They presented a symmetry classification algorithm based on 
enabled transformations, fundamental Lie point symmetries and 
Lie algebraic compositions. A Toda type lattice equation confirmed 
the efficiency of the proposed technique.

In [100], Yue Wang established the existence of meromorphic 
solutions and elucidated their properties by employing Nevanlinna 
theory, which deals with the value distribution of meromorphic 
functions. The outcomes of this investigation were found to be 
more precise compared to the previously available results in the 
literature. To illustrate the accuracy of their findings, the author 
provided specific examples.

In [101], Lingyun Gao consider the complex system of DDEs

                                    (80)

                                   (81)

                                   (82)

                                  (83)

The author discussed the system of complex DDEs of 
two types with finite order and obtained the entire solution. He 
extended some of the results of complex DDE to the system of 
complex system of DDEs.

A new method based on the replicating kernel Hilbert space 
approach and the Gram-Schmidt orthogonalization procedure 
was presented by Sahihi et al. [102].  This approach is designed  
to address singularly perturbed DDE exhibiting boundary layer 
behavior. In particular, the equations require a negative change in 
the term for the derivative for neighbourhood points denoted by 
parameter r, which can be either 0 or 1.

   (84)

   (85)

here ϵ, η are small arguments, and 0 < ϵ ≪ 1,0 < η ≪ 1. The 
smooth functions are p(l), q(l), g(l), ψ(l) and β is fixed, q(l) ≤ −ϑ < 
0, p(l) ≥ N> 0 and ϑ, N are positive generic constants. The domain 
of the presented problem was split into two subintervals by the 
authors: one had a boundary layer, while the other did not. Their 
proposed method yielded meaningful results, particularly when the 
boundary layer is situated on the left side. In the case of equation 

(84), it was necessary to adjust the variable to account for changes 
within the boundary layer region.

In [103], Pathirana et. al consider the coupled DDEs having 
time varying delays

                          (86)

                                       (87)

here the state vectors are u(.) ∈ m, y(.) ∈ n. In the context 
of the problem, several constant matrices are known, including C 
∈ m×m, D ∈ m×n, E ∈ n×m, and F ∈ n×n Notably, F is supposed 
to be a Schur matrix. The variable in time delays are represented 
by τ(t) ∈ ≥ 0 and w(t) ∈ ≥ 0. The authors addressed the stability 
problem arising from a  particular class of DDEs that are positively 
associated and contain unbounded variable in time delays. This 
technique is based on applying a decreasing function to determine 
the upper bounds for the state vector. This approach was employed 
to assess and verify the stability of the system. This method did not 
practice the comparison approach, or the usual Lyapunov Krasovskii 
functional approach depends on positive systems having constant 
delays as in existing techniques. New asymptotic stability of the 
system having boundless variable in time delays is derived. A 
numerical example using simulation is provided to validate the 
stability requirement.

In [104], Sirisha et. al introduced a mixed finite difference 
approach for solving singularly perturbed DDEs

  (88)

under the conditions

                                               (89)

                                            (90)

here 0 < ϵ ≪ 1 is perturbation parameter, η is the delay and 
δ is the advance parameter α(r), β(r), γ(r), ω(r), g(r), ψ(r), ϕ(r) 
are continous differentiable and bounded functions. The authors 
used mixed finite difference technique for solving eq.  (88). The 
authors adopted a decomposition approach to address the problem 
at hand, leading to solutions exhibiting boundary layer behavior 
primarily in the direction of the interval’s left end. By adding a 
terminal point inside the domain, they divided the problem in two 
different parts: the inner and outer regions. This transformation 
effectively reduced the given problem into an equivalent 
asymptotically singular perturbation problem. They then treated 
the problem separately for the inner and outer regions, employing 
the mixed finite difference technique for both. Various choices of 
the terminal point were utilized in applying the proposed method. 
To assess the reliability and effectiveness of their approach, the 
authors conducted convergence and capability tests using different 
illustrative examples.

In [105], Sunil Kumar et. al consider the singularly perturb 
DDE of elliptic type

                               (91)

        (92)

The authors presented a complete flux scheme depends on the 
finite volume for the solution of eq. (91). They developed alternate 
integral descriptions for the flux that performs a vital role   in the 
complete flux scheme’s derivation. They proved the consistency, 
stability, and quadrature convergence for the proposed approach. 
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Numerical examples are successfully solved by applying the 
proposed approach.

In [106], Rong WuLu consider the integrable differential 
difference equation

                                            (93)

                                              (94)

The authors devised a one-fold Darboux Backlund 
transformation for equation (93), building upon the approach 
detailed in reference [107]. They accomplished this by employing a 
suitable gauge transformation matrix, akin to a Lax pair framework. 
Subsequently, the one fold Darboux Backlund transformation 
was extended to an N fold Darboux Backlund transformation by 
employing it N times. This N-fold transformation was then applied 
to derive two exact solutions for the equation.

In [108], Dong and Liao gave meromorphic DDE’s solutions 
in general of the form

                 
(95)

here L(z,g)  0 represents linear differential difference 
polynomial of g with small coefficient function. Non-vanishing 
constants are 1 < k1 < ... < kp, αi(1 ≤  i ≤ q, and non-vanishing small 
functions are ai(z)(1 ≤ i ≤ p. In addition, the symbol S(l, f ) indicates 
the small quantum of function g(z) fulfilling S(l, f ) = o(T (l, f )) as 
l → ∞ outside of a feasible remarkable set with finite logarithmic 
measurement. They employed Nevanlinna theory [109,110]. They 
also consider the symbols σ(g) = limsupl→∞ , λ(g) = limsupl→∞

. If the inequalities λ(g) <σ(g), λ(1/g < σ(g) are satisfied, then 
equation (95) yields transcendental meromorphic solution g of finite 
order. Then the relationships among coefficients in ϕ(z, g) and αi, λi 
and representation of g can be achieved.

In [111], Sahihi et. al consider singularly perturbed DDEs 
having delay

  (96)

                                       (97)

here ϵ, η are small arguments, and 0 < ϵ ≪ 1,0 < η ≪ 1. The 
smooth functions are p(l), q(l), g(l), ψ(l) and β is fixed, q(l) ≤ −ϑ < 
0, p(l) ≥ N > 0 and ϑ, N are positive generic

constants. The authors used the reproducing kernel Hilbert 
space technique depend on the collocation approach for the 
solution of eq. (96). The authors implemented a technique that 
involves the Gram-Schmidt orthogonalization process to address 
equation (96). Both boundary layer and small-delay oscillatory 
behaviour are shown by this equation. There are two subintervals 
in the domain of the problem: one with a boundary layer and the 
other without. It is shown form given numerical examples that 
the proposed method gives rapid convergence with compact 
computational labor.

A novel approach is introduced, involving an exponentially 
adapted three-term finite difference method, to numerically 
approximate a boundary-value problem associated with a singularly 
perturbed 2nd order DDE. This DDE features both negative 
delayed and positive advanced shifts, and the study by Ranjan et 
al. [112] addresses this problem. The approach leverages Taylor’s 
series expansion to create an approximation of the problem, and 
subsequently, employs finite difference approximation techniques 
to establish a new three-term recurrence relationship. Additionally, 

a new exponential fitting factor is incorporated to the obtained 
technique employing the notion of singular perturbations, and 
the resultant tridiagonal system of equations is solved using an 
effective ”discrete invariant imbedding algorithm.”

Anwar et al. [113] introduced a stochastic paradigm driven by 
artificial intelligence capabilities to numerically address nonlinear 
DDEs. They utilized this approach to study the dynamics of plant 
virus propagation while considering the effects of seasonality 
and delays. Their method involved the implementation of neural 
networks combined with a Bayesian regularization trchnique for 
improved accuracy and robustness in solving the DDEs systems.

Shoaib et al. [114] explored the dynamics of a non-linear SEIR 
model with multiple delay terms, focusing on worm transmission in 
wireless sensor networks. They employed an intelligent numerical 
computing approach, harnessing neural networks and the 
Bayesian regularization approach. The mathematical model under 
investigation pertained to a system of DDEs that characterized the 
dynamics of wireless sensor networks.

3.　CONCLUSION
In this study, comprehensive literature concerning research 

assignments for solving DDEs using analytical and numerical 
approaches has been presented. Initially, researchers found the 
presence, uniqueness, and stability of periodic solutions of DDEs. 
Some researchers discussed the asymptotic behavior of solutions 
of DDEs. As all the DDEs are difficult to handle analytically. so 
most of the researchers keep focusing to tackle such problems 
numerically.

New theorems with their proofs has been presented 
successfully by using differential transform approach to the 
solution of DDE. DDEs solved by applying Taylor polynomial 
approach by calculating the coefficients using Taylor expansion. 
The truncation limit of N would be chosen largely to get the best 
approximation. A new algebraic algorithm to develop traveling 
wave solution has been presented. Nonlinear differential difference 
problems have not been handled directly by the homotopy analysis 
method earlier. But the authors have found the solution to such 
problems by using homotopy analysis method successfully. A 
numerical treatment to high order linear singular differential 
difference problems has been obtained by employing the first kind 
Bessel polynomials. Several rational Jacobi elliptic solutions to 
non-linear DDEs by　the lattice equation have been presented, 
while the modulus (m→ 1, m→0), trigonometric　function 
solutions, and hyperbolic function solutions have been acquired.  
An analytical solution　of the equation is obtained from the exact 
solution which is polynomial, an intriguing characteristic of this 
technique. This method can be easily used to find the approximate 
solution via computer coding composed in matlab R2008a. A 
nonlinear DDE of incompressible viscous fluid including a finite 
relaxation rate has been presented. The model consists of just one 
new rheological parameter, τ is the relaxation time. Several exact 
solutions to such models have been derived. Conservation laws 
and N fold Darboux transformation forthe non-linear Schrodinger 
DDE depends on its Lax pair have been constructed. As a result, 
odd soliton solutions have been derived based on the determinant. 
Homoclinic solutions to the DDE have been presented. The 
associating theorem for the existence of a homoclinic solution is 
analyzed. A symmetry classfication algorithm based on enabled 
transformations, fundamental Lie point symmetries, and Lie 
algebraic compositions have been presented for generalized 
DDEs. High dimensional Lie-algebras are required to develop 
symmetry classification. The classification regarding Liealgebras 
turns fiercely more complex by the increase of dimension and 
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needs to accord with an extensive quantity of isomorphism classes. 
Meromorphic solutions of DDEs have been presented.

The stability analysis in this study relies on linear matrix 
inequalities to solve coupled DDEs with multiple delays, especially 
in the context of channels. The approach significantly reduces 
the problem’s size when compared to conventional formulations 
that deal with differential-difference problems. Additionally, the 
authors introduced the Taylor collocation scheme as a method for 
solving high-order linear systems of DDEs. It was observed that 
the solutions obtained using this scheme are more reliable than 
those achieved through methods found in existing literature. The 
study also established sufficient conditions for the existence of 
periodic C1 solutions within the system of DDEs. Furthermore, 
necessary and sufficient conditions for asymptotic stability were 
provided for coupled delay DDEs involving time-fluctuating 
delays while preserving internal-positive characteristics. Various 
properties related to the asymptotic behavior and monotonicity 
of such problems, as well as initial conditions, were identified. 
The research presented the analysis of asymptotic stability for 
positively coupled DDEs with unbounded time variable delays.

The study successfully derived an integral representation for 
the classical solution to the Cauchy problem of a parabolic DDE. 
Furthermore, generalized conditional symmetries were employed 
as an effective method for solving problems that exhibit a limited 
number of Lie point and conditional symmetries. These conditional 
symmetries were utilized to discover new exact solutions for DDEs. 
To explore the Lie symmetries associated with DDEs, the work of 
Estabrook and Harrison was extended. In addition, the discrete 
exterior differential method was applied to analyze the symmetry 
properties of the (2+1) dimensional Toda problem within this 
context. The study also presented traveling wave solutions for 
nonlinear polynomial DDEs through explicit integra-tion methods. 
A straightforward algorithm known as the symmetrical Fibonacci 
tane function approach was introduced in this context.
　expansion method has been presented to solve　nonlinear DDE, 
trigonometric-function solutions and hyperbolic-function solutions 
along with parameters have been obtained. Special solutions, 
including singular traveling wave solutions and kink-type solitary 
wave solutions, were obtained by setting specific parameters to 
special values. Exact solutions for nonlinear DDEs were derived 
using the exponential function-rational expansion approach. 
Additionally, the Adomian decomposition technique was utilized 
to solve a nonlinear DDE, leading to exact solutions for discrete 
mKdV problems and the Volterra problem. The soliton solution of 
the discrete mKdV problem by using Pade approximation has been 
obtained that quite matches the exact solution. Entire solutions to 
non-linear difference as well as partial DDEs of the Fermat type 
have been presented.

The study showcased the existence of meromorphic solutions 
and explored their properties within the realm of complex DDEs, 
employing Nevanlinna theory to analyze the value distribution 
of meromorphic functions. Notably, the results obtained were 
more accurate compared to the existing findings in the literature. 
Moreover, the research successfully derived entire solutions 
for　two types of complex DDEs with finite orders. Several 
results pertaining to complex DDEs were extended to complex 
DDE systems, expanding the scope of the study.

A numerical approach for solving Riccati DDEs was 
introduced, utilizing a collocation scheme based on first-
kind Bessel functions. However, it’s important to note that the 
solution might not be valid when the parameter ”N” is large 
due to issues related to polynomial interpolation. When using a 
computer algebraic system, computational errors can become 

significant for large ”N.” The study also calculated trigonometric, 
hyperbolic, and rational types of exact solutions for fractional 
DDEs by choosing appropriate parameter values. This method is 
effective, accurate, and easily implementable using computer 
software such as Mathematica. Time　fractional DDEs with 
a rational type were modeled using an enhanced version of 
the  expansion technique. Symbolic computation systems 
like matlab, Maple, and Mathematica played a crucial role in 
these calculations. Fractional complex transmutations were 
employed to convert fractional differential equations, including 
Jumarie’s discretion, into ordinary differential equations. These 
transmutations were particularly applicable to wave solutions, 
although not  all forms of fractional order differential-difference 
equations could be accommodated by this method. The study also 
introduced the Modified He Laplace method for solving nonlinear 
fractional differential-difference problems. This method provides 
solutions in the form of nonlinear fractional DDEs, which can be 
directly measured without requiring perturbation, linearization,  or 
conditional assumptions. Furthermore, the infinite series obtained 
in this method exhibits rapid convergence to the exact solution.

The study focused on the numerical solution of singularly 
perturbed DDEs that exhibit rapid oscillations with both positive 
and negative shifts. The amplitude of these oscillations is 
influenced by the shifts, either decreasing or increasing, depending 
on whether the negative shift dominates or the positive shift 
dominates, respectively.  For both types of shifts, the period   of 
oscillations remains unchanged as long as the shifts are of the order 
of ’ϵ2’. Specifically, a second-order singularly perturbed DDE, 
featuring a negative shift in its first derivative, was solved using 
the B-spline collocation method in combination with a fitted mesh. 
This method achieved approximately second-order parameter 
uniform convergence. The research also tackled the numerical 
solution of time-dependent singularly perturbed DDEs involving 
advanced and delay terms with a boundary layer. The technique 
employed B-spline collocation for the spatial direction, employing 
a piecewise uniform mesh, and an implicit Euler technique for 
transient discretization of ordinary differential equations in the 
time dimension. Importantly, this technique demonstrated uniform 
convergence concerning both the perturbation parameter and 
the mesh parameter. Furthermore, singularly perturbed DDEs 
exhibiting boundary-layer behavior were addressed using an 
improved reproducing kernel approach, specifically within the 
framework of the reproducing kernel Hilbert space method. The 
problem was divided into two subintervals, and the approach 
yielded a good approximation by selecting distinct values of 
δ and ϵ. However, this method was particularly effective when 
the boundary layer occurred within the subinterval containing 
significant singularity. It may not be as suitable when dealing with 
points having exponential properties throughout the entire [0, 1] 
interval. Lastly, singularly perturbed DDEs with mixed shifts were 
solved using domain-decomposition techniques. The obtained 
solutions exhibited boundary-layer behavior at the left end of the 
interval. These domain-decomposition techniques originated from 
Prandtl and are well-suited for addressing singular perturbation 
problems. The solution’s behavior primarily at the boundary layer 
could be illustrated by using such techniques. Also, the Numerov 
technique with the mixed-finite differences and Non-symmetric 
finite differences have been utilized to handle the 1st derivative.  
This method has been used  for solving inner as well as the 
outer region.  The final pointxl has shown iterative behavior,  the 
procedure is repeated to several values of xl as for as the solution is 
sustained in inner as  well as the outer region. Elliptic singularly-
perturbed DDEs have been tackled using a complete flux technique. 
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Reference function based element-wise inhomogeneous boundary 
value problems　has been used to obtain the fluxes with specific 
2 elements originating from the particular and homogeneous 
solutions of the boundary value problems. Numerical fluxes have 
been derived by using inhomogeneous fluxes composed owing 
to Green’s function in addition to an appropriate selection of 
quadrature rules.

Linear integro DDEs have been solved numerically by 
employing the Chebyshev collocation method. The Chebyshev 
polynomial coefficients can be easily obtained by utilizing the 
computer programs is a remarkable benefit of this method.The 
shifted Legendre tau technique has proven to be an effective 
approach for addressing higher order linear Fredholm integro 
DDEs that involve variable coefficients. The study provided a 
numerical solution to these linear integro-differential-difference 
problems using the Boubaker collocation scheme. A notable feature 
of this method is its ability to extend the associated functions in 
the problem into the Boubaker series. Moreover, determining 
the coefficients of the Boubaker polynomial efficiently through 
computer code is another significant advantage of this scheme. 
Fredholm integro-DDEs were also addressed using a collocation 
method based on the Euler Taylor polynomial. This approach 
offers two primary benefits: it aids in the development of matrix 
equations and is computationally efficient, resulting in reduced 
computing time. In addition, the numerical solution for linear 
integro DDEs was obtained by employing Dickson polynomials. 
The main advantage of this technique lies in its ability to extend 
the functions in the equation into Dickson polynomials. To achieve 
the most desirable approximation, it is essential to choose a 
sufficiently large truncation limit, denoted as ’N ’. Furthermore, 
the study derived a one-fold Darboux-Backlund transformation by 
employing an appropriate gauge transformation matrix similar to 
a Lax pair for an integrable system of DDEs. Subsequently, the 
N-fold Darboux-Backlund transformation was derived by utilizing 
this one-fold transformation multiple times. Artificial intelligence 
techniques were used to analyze the dynamics of plant virus and 
wireless sensor network systems, providing a novel approach to 
numerically treat systems with delay differential equations.

In the future, one may used the capabilities of computing 
paradigms centered around artificial neural networks and their 
deep variants to numerically address differential and difference 
models [115–120].
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