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ABSTRACT

Speaker recognition has evolved over nearly five decades, with speech standing out as the most intuitive mode of communica-
tion. The i-vector has long held its position as the pinnacle of technology in speaker verification. However, this proposed work in-
troduces deep learning technology with the aim of surpassing the established i-vector in speaker verification applications. Numerous 
techniques have been explored in prior research to enhance speaker accuracy, but the integration of deep learning techniques marks 
a significant and revolutionary shift. This research aims to establish an automated deep-learning framework specifically designed 
to enhance the discriminative power of speaker verification representations. We conducted various experiments on the VoxCeleb-1 
database to assess the performance of different deep learning methods, including the use of multiple activation functions and opti-
mizers. These experiments were designed to evaluate the effectiveness of the algorithms, and we validated our proposed system’s 
performance using benchmark dataset tests. Our system achieved its highest success rate by utilizing the Relu activation function, 
employing Stochastic gradient descent (SGD) as the optimizer, and incorporating a second layer. This resulted in a notable decrease 
in the Equal Error Rate (EER) from 17.6 to 9.93, representing an approximate 50% improvement in accuracy on the benchmark 
tests. These results clearly indicate that our automated model surpasses existing literature in this area. We anticipate that our pro-
posed model will be a valuable asset for researchers and the academic community, facilitating further exploration and advancement 
in this field.

Keywords: Sounds detection, speech recognition, artificial intelligence, deep neural network, speaker recognition, signal processing, 
unsupervised learning.

1.　INTRODUCTION

In recent decades, there has been a remarkable surge in the 
advancement of speaker recognition technology. In 1997, comput-
er systems were limited to comprehending just over 1000 words, a 
capacity that leaped to 20,000 words by the 1980s. The evolution 
of speaker recognition technology has been notably spearheaded 
by IBM, which introduced the initial consumer-oriented product, 
Dragon Dictate, in the 1990s. Subsequently, 1996 marked a sig-
nificant milestone in voice recognition with the introduction of a 

groundbreaking product by IBM, marking a pivotal moment in the 
field. The technological landscape further evolved with Google’s 
introduction of its voice search app for the iPhone, followed by the 
launch of Apple’s Siri. The past decade has witnessed a surge in 
the development of advanced voice recognition systems by lead-
ing technology companies. This is evident in the introduction of 
prominent virtual assistants like Amazon’s Alexa, integrated with-
in the Echo device, and Microsoft’s Cortana. This paper explores 
the trajectory of speaker recognition technology, delving into its 
historical milestones and the transformative impact of innovative 
products and systems introduced by industry leaders. Efforts by 
researchers to develop an efficient and reliable speaker recogni-
tion system have led to various advancements. Initial efforts fo-
cused on identifying individuals, followed by the introduction of 
automatic systems [1]. Previous research has explored the use of 
features extracted from both the speaker’s vocal tract (source) and 
the recording system (channel) for speaker recognition tasks [2]. 
Speaker recognition systems have primarily been utilized in fa-
cilities and network access-control applications [3]. Comparisons 
have been made between the best speaker-specific information and 
information derived from Mel-Frequency Cepstral Coefficients 
(MFCC) [4].

The field of speaker pattern recognition has witnessed a 
surge in research activity in recent years. Initial efforts relied on 
private datasets compiled by individual researchers, focusing on 
a limited range of sounds [5-6]. For instance, Woodard employed 
a hidden Markov model (HMM) to classify just three categories: 
opening/shutting wooden doors, dropping metal objects, and pour-
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ing water [5]. A turning point came with the introduction of pub-
licly available datasets through the Detection and Classification 
of Acoustic Scenes and Events (DCASE) challenge series [7-9]. 
DCASE offered datasets for tasks like acoustic scene classifica-
tion and sound event detection, fostering broader research interest. 
The 2019 DCASE challenge alone attracted 311 entries across five 
subtasks, highlighting the increased engagement [10].

However, a key question remains: how effectively can au-
dio pattern recognition systems leverage large-scale datasets for 
training? In computer vision, the extensive ImageNet dataset has 
fueled the development of image classification systems [11]. Sim-
ilarly, natural language processing has benefited from large text 
datasets like Wikipedia for building language models [12]. In con-
trast, training on large-scale audio datasets has been less explored 
[13-15].

A significant development was the release of AudioSet, a 
dataset boasting over 5,000 hours of audio recordings categorized 
into 527 sound classes. Notably, AudioSet provided pre-extracted 
embedding features derived from a trained convolutional neural 
network, rather than raw audio data [13]. While these features 
have been utilized by researchers to build recognition systems [13, 
16-20], their efficacy as the sole representation for audio record-
ings might be limited, potentially hindering system performance.

Building upon existing methods, researchers have adapted 
training techniques like WCCN for generalized linear kernel ap-
proaches [21]. Additionally, the field has seen exploration of deep 
neural networks (DNNs) integrated with hidden Markov models 
(HMMs) for speech recognition, aiming to achieve higher recog-
nition accuracy [22, 23]. A novel framework employing a statis-
tical i-vector model guided by deep neural networks has been 
introduced, representing a significant advancement in speaker au-
dio recognition [24]. DNNs have also been utilized for extracting 
high-level features from raw data, like intelligent neuro-computa-
tional approach for piezoelectric material [25], soft computing ap-
proach for wideband transducer [26], Bouc-wen hysteresis model 
investigation with deep intelligent network [27], and Recurrent 
neural networks for piezoelectric models [28], these all showing 
promising results of DNNs in the field of optimization and speech 
emotion recognition [29].

In the domain of background noise modeling, there’s a shift 
towards acquiring functions resilient to noise effects, eliminating 
the need for hand-designed components [30]. Previous research 
explored a connectionist hidden Markov model (HMM) system 
for extracting noise-resistant audio features [31]. Despite recent 
advancements in deep learning technology, i-vectors remain at the 
forefront of speaker recognition. However, there’s still a need for 
further exploration and attention to harness the full potential of 
deep learning in this field [32]. This work presents an automat-
ed system leveraging artificial intelligence (AI) to refine i-vectors 
employed in speaker verification. We propose a novel approach 
that transcends the limitations of traditional i-vector representa-
tion. Our system utilizes deep learning architectures, specifically 
multi-layer neural networks, to extract more discriminative speak-
er embeddings. To develop an efficient and reliable computational 
model for speaker verification, benchmark datasets relevant to the 
domain are essential. We plan to construct or acquire benchmark 
datasets and train deep neural network classifiers using i-vectors 
and speaker labels. Subsequently, testing i-vectors will undergo 
transformation using the trained deep neural network, followed by 
cosine scoring to evaluate the transformed vectors.

1.1　Contributions and innovative insights

●This research presents a significant advancement in speaker ver-
ification by leveraging deep learning techniques to surpass the 
limitations of traditional methods like i-vectors. Here’s a break-
down of the key contributions and innovative aspects:

●The work proposes a move from established techniques like 
i-vectors to deep learning architectures for speaker verification. 
This shift has the potential to unlock superior accuracy and ro-
bustness in speaker identification tasks.

●The research focuses on developing an automated system that 
leverages deep learning for improved speaker verification vector 
accuracy. This automation streamlines the process and facilitates 
wider adoption.

●The study employs a systematic approach by evaluating various 
deep learning methods, including activation functions and op-
timizers, using the VoxCeleb-1 database. This exploration pro-
vides valuable insights into the impact of different deep learning 
configurations on speaker verification performance.

●research validates the proposed system’s effectiveness through 
benchmark dataset tests. The significant reduction in Equal Er-
ror Rate (EER) from 17.6 to 9.93 demonstrates a substantial 
improvement in accuracy (approximately 50%). This surpasses 
existing literature in the field.

●The proposed model is expected to be a valuable asset for re-
searchers and the academic community. It can serve as a foun-
dation for further exploration and advancement in speaker ver-
ification research, potentially leading to even more robust and 
accurate systems.

1.2 Organization

This paper is organized as follows. Section II details the pro-
posed deep neural network (DNN)-based technique for speaker 
embedding extraction from i-vectors. Section III describes the 
experimental framework, outlining the setup and the specific da-
tabase employed for evaluation. Section IV presents and analyzes 
the obtained results. Finally, Section V concludes the paper, sum-
marizing the key findings and potential future directions.

2.　PROPOSED METHOD

The optimal backend for i-vector implementation has been 
identified as Probabilistic Linear Discriminant Analysis (PLDA). 
However, obtaining labeled data for speakers incurs higher costs. 
Performance gains are minimal for short utterances but substan-
tial for longer ones. This observation prompted researchers to ex-
plore alternative deep learning (DL) backends. Most proposed ap-
proaches leverage speaker labels from background data, yet show 
no significant improvement compared to PLDA [33].

NIST recently organized a speech recognition challenge ad-
dressing the achievement of comparable performance to PLDA 
when the development data lacks labels. One approach incorpo-
rates a specialized hybrid architecture that merges a Deep Belief 
Network (DBN) with a Deep Neural Network (DNN) [34]. An al-
ternative approach involves training an end-to-end speech recogni-
tion system. This system processes data through a unified network 
across multiple stages, potentially offering a more streamlined and 
efficient approach compared to conventional, multi-stage pipe-
lines [35]. This combination potentially leverages the strengths of 
both architectures to enhance speaker recognition. Various models 
were explored where speaker spectral features are input, yielding 
similarity scores as output. However, these techniques proved less 
competitive than other speaker embedding approaches. The whole 
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methodology steps are presented as a graphical abstract in Fig 1.
For speaker verification investigations, a deep neural net-

work (DNN) framework was employed. During development, the 
DNNs were trained to classify frame-level speakers. Our proposed 
speaker verification system employs a Deep Neural Network 
(DNN) for frame-level speaker classification. During enrollment, 
speaker-specific features are extracted from the final hidden layer 
of the trained DNNs. These features are then averaged to create 
a speaker model. In the evaluation phase, a D-vector is extracted 
for each utterance and compared to the designated speaker model 

for verification. Experimental results demonstrate that the DNN-
based system achieves competitive performance compared to ex-
isting i-vector systems. Notably, the DNN system exhibits superi-
or robustness and effectiveness, particularly at low false rejection 
rates. Overall, the proposed system surpasses the i-vector system 
by up to 50% in terms of Equal Error Rate (EER) for speaker ver-
ification tasks. Fig 2. Despite the block diagram of the verification 
system for speech recognition.
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Fig.1　Graphical Abstract of proposed work
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2.1　Deep neural network 

In the realm of speaker recognition, deep neural networks 
(DNNs) have emerged as a powerful tool for identifying individ-
uals based solely on their voice characteristics. Unlike traditional 
methods that rely on handcrafted features, DNNs excel in their 
ability to automatically learn these features directly from speech 
data. This section delves into the intricate workings of DNNs and 
how they are employed for speaker recognition. The deep neural 
network is composed of a sophisticated arrangement of neurons 
organized into various layers. The fundamental unit of a deep neu-
ral network is referred to as a neuron, the structure of DNNs is 
depicted in Fig 3. At the input layer of the network, i-vectors are 
utilized, while the output layer generates new vectors (embedded) 
as a result of the deep neural network processing. 
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Fig.3　Basic Architecture of Deep learning Neural networks 

Imagine a complex web of interconnected processing units, 
inspired by the structure and function of the human brain. This is 
the essence of a DNN. It comprises multiple layers, stacked one 
upon another, with each layer containing numerous artificial neu-
rons. These artificial neurons, unlike their biological counterparts, 
perform simple mathematical operations on the data they receive.

The initial layer where the speech features, extracted from 
the audio signal, are fed into the network. These features can 
encompass various aspects of the voice, such as pitch, mel-fre-
quency cepstral coefficients (MFCCs), and spectral information. 
The heart of the DNN, these layers are responsible for learning 
complex relationships between the input features and the desired 
output (speaker identity). Each hidden layer contains a predeter-
mined number of artificial neurons, and the connections between 
these neurons carry weights that are adjusted during the training 
process. The final layer of the DNN produces the network’s pre-
diction. In speaker recognition, the output layer typically uses a 
SoftMax activation function, which assigns a probability score to 
each potential speaker. The speaker with the highest probability 
score is identified as the most likely source of the voice.

The magic of DNNs lies in their ability to learn from vast 
amounts of labeled speech data. This data consists of audio re-
cordings paired with the identities of the speakers. During train-
ing, the DNN iteratively processes these recordings, adjusting the 
weights between its neurons to minimize the difference between 
the predicted speaker identity and the actual identity. The learning 
process is as follows:
1.Forward Pass: The speech features are fed through the input lay-

er and propagate forward through the hidden layers. At each lay-
er, the weighted sum of the incoming signals is passed through 
an activation function, introducing non-linearity and allowing 
the network to learn complex patterns.

2.Error Calculation: The output layer’s prediction (speaker iden-
tity) is compared to the actual speaker label. The difference be-
tween the predicted and actual identity is calculated as the error.

3.Backward Pass: The error is then propagated backward through 
the network. This process, called backpropagation, adjusts the 
weights of each connection in a way that minimizes the overall 
error.

4.Iteration: Steps 1-3 are repeated for numerous iterations over the 
training data. With each iteration, the DNN progressively refines 
its internal representation of speaker characteristics, ultimately 
learning to distinguish between different voices.

2.2 Stochastic Gradient Decent optimizer (SGDO):

Stochastic Gradient Descent (SGD) is an optimization tech-
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Fig.2　Block diagram of verification system for speakers
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nique widely used for training deep learning models. Unlike tra-
ditional gradient descent, which considers the entire dataset for 
each update, SGD takes a nimbler approach. It utilizes mini-batch-
es, smaller subsets of the training data, to calculate the gradient 
and update the model’s parameters. This iterative process allows 
SGD to navigate the complex error landscape efficiently, gradually 
steering the model toward the optimal parameters that minimize 
the loss function. While SGD can introduce slight fluctuations in 
the learning process due to the mini-batch nature, it offers a signif-
icant advantage in terms of computational efficiency, especially 
for large datasets, making it a cornerstone optimizer in the realm 
of deep learning.

Training deep neural networks for speaker recognition in-
volves navigating a complex landscape of errors. Stochastic Gra-
dient Descent (SGD) acts as a powerful guide in this journey. 
SGD tackles the challenge by iteratively updating the network’s 
internal parameters in small steps. During each step, it analyzes 
a mini-batch of training data, calculates the error associated with 
the current parameter settings, and adjusts the parameters in the 
direction that minimizes the error for that specific mini-batch. This 
iterative process, repeated across numerous mini-batches, gradu-
ally steers the network towards a more accurate representation of 
speaker characteristics. While SGD offers computational efficien-
cy, it can take longer to converge than other optimizers. However, 
its effectiveness and simplicity make it a cornerstone technique for 
training deep learning models in speech recognition.

3.　EXPERIMENTAL STEPS AND USED DATABASE

3.1　Dataset formulation

All experiments conducted in this study utilized the VoxCe-
leb-1 database, which comprises 153,516 speech utterances [36]. 
The VoxCeleb-1 database was employed for training and evalua-
tion purposes. To maximize the available data for model develop-
ment, an unlabeled learning approach was adopted. This involved 
utilizing both the development and test subsets during the training 
phase. The development section comprised 148,642 speaker ut-
terances, representing 1,211 speakers with various accents. The 
test subset contained 4,874 utterances from 40 speakers and served 
for model assessment. Consequently, our network comprises 1,211 
neurons in the classification layer.

3.2　Experiment

A total of 37,720 experiments were conducted, with the 
VoxCeleb-1 database’s test set used for experimentation. The 
evaluation employed a two-part test structure, with the first half 
designated for non-target trials and the second half for target tri-
als. For model training, we leveraged development data from the 
VoxCeleb-1 dataset. This data was used to train both the Universal 
Background Model (UBM) and the Total Variability (TV) matrix. 
Mel-Frequency Cepstral Coefficients (MFCCs) with delta features 
were employed throughout the process, with a consistent dimen-
sionality of 20. Additionally, a 1024-component UBM was trained 
to extract 400-dimensional i-vectors. Notably, the Alize Toolkit 
handled all stages involving total variability matrix computation, 
UBM model training, and i-vector extraction [37].

The network architecture designed in this research comprises 
various hidden layers, each consisting of 400 neurons. The net-
work input layer contains 400 neurons, while output layer compris-
es 1,211 neurons representing the 1,211 data classes. The training 

process employed 100 epochs with the SoftMax activation func-
tion. To optimize the network, a learning rate of 0.03 with a decay 
of 0.0002 and a batch size of 100 samples were chosen. These 
hyperparameters were selected through a separate grid search op-
timization process to ensure optimal training convergence. The 
Equal Error Rate (EER) served as the primary evaluation metric 
for speaker verification vector performance. The system achieved a 
minimum EER of 9.93% after 100 epochs, indicating a significant 
improvement over the baseline of 17.6%. This reduction in EER 
translates to a roughly 50% enhancement in speaker verification 
accuracy. For testing phase, various experiments were conduct-
ed to explore different parameters in the proposed Deep Neural 
Network (DNN) aiming to improve accuracy. Different numbers 
of layers were experimented with, including Layer 2, 3, 4, and 5.

4.　RESULTS AND DISCUSSION

We conducted various experiments on different parameters 
within our proposed Deep Neural Network (DNN) to enhance ac-
curacy. These experiments involved exploring different types of 
layers with varying numbers of neurons, including Layer 2, 3, 4, 
and 5. The Equal Error Rate (EER) exhibited a progressive in-
crease with the addition of layers to the deep learning architecture. 
The EER was measured at 10.24 with 2 layers, rising to 11.52, 
12.75, and 12.73 with 3, 4, and 5 layers, respectively. Based on 
validation accuracy, Layer 2 was determined to be the most effec-
tive (as depicted in Fig. 4), with an EER of 10.24. Consequently, 
Layer 2 was fixed, and further experiments were conducted on 
other parameters.

Next, this work explored the impact of various activation 
functions on the neural network’s performance. We experiment-
ed with sigmoid, linear, tanh, and relu activation functions. The 
corresponding EER ratios obtained were: 10.34 for linear, 9.93 
for relu, 10.31 for sigmoid, and 10.52 for tanh. Relu activation 
function demonstrated the best performance in terms of valida-
tion accuracy (as shown in Fig. 5), with an EER of 9.93. Hence, 
relu function was selected, and experiments continued with other 
parameters. Subsequently, we explored the influence of different 
optimizers on the network’s performance, including SGD, Adam, 
Adagrad, and Adadelta. The resulting EER ratios were: 9.93 for 
SGD, 10.91 for Adam, 10.28 for Adagrad, and 10.46 for Adadelta. 

SGD optimizer exhibited the highest validation accuracy (as 
illustrated in Fig. 6), with an EER of 9.93. Therefore, SGD opti-
mizer was chosen, along with relu activation function and Layer 2.

After compiling all experimental results, we integrated them 
into a table to evaluate and compare the performance across dif-
ferent configurations. This integration process resulted in the 
following EER table, providing a comprehensive overview of the 
network’s performance under various conditions. 

By comparing this proposed work with the i-vector approach. 
●Our experiments established a baseline Equal Error Rate (EER) 

of 17.6 using the i-vector approach.
●The proposed deep learning architecture achieved a significant 

reduction in EER, reaching 9.93. This translates to an approxi-
mate improvement of 44% in speaker verification accuracy com-
pared to the i-vector baseline on the benchmark test.

●Our system’s performance surpasses previously reported re-
sults in the relevant literature, demonstrating its effectiveness in 
speaker verification.

●In other references, the EER was 10.2; hence, this research 
shows enrichment in terms of accuracy with enhanced and im-
proved results.
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  Fig.4　Layers comparison using EER

Fig.5　Activation function comparison using EER

Fig.6　Optimizer’s comparison using EER

Table 1　Comparison of EER Using different optimizers and 
activation functions

No. No. of Hidden 
Layers Activation Used Opti-

mizer Epochs EER Val-
ue (%)

I 2 Linear func-
tion

Gradient 
decent 1×102 10.3

II 3 Linear func-
tion

Gradient 
decent 1×102 11.5

III 4 Linear func-
tion

Gradient 
decent 1×102 12.8

IV 2 ReLU func-
tion

Gradient 
decent 1×102 9.9

V 2 ReLU func-
tion

Adam 
method 1×102 10.9

VI 2 ReLU func-
tion AdaGrade 1×102 10.3

VII 2 ReLU func-
tion AdaDelta 1×102 10.5

VIII 5 Linear func-
tion

Gradient 
decent 1×102 12.7

IX 2 Sigmoid 
function

Gradient 
decent 1×102 10.3

X 2 Tanh func-
tion

Gradient 
decent 1×102 10.6

Table 2　EER Comparison of proposed embedding’s, base-
line and i-vectors

S.No Methods EER Value (%)

1. Baseline approach 17.6
2. i-vector approach 10.2
3. Proposed approach 9.9
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5.　CONCLUSION

For nearly five decades, speaker recognition has been an 
ongoing endeavor, primarily driven by the ubiquitous nature of 
speech in communication. Previous research has established i-vec-
tors as a dominant approach in speaker recognition. However, this 
work explores deep learning architectures with the goal of achiev-
ing superior performance in speaker verification tasks. Through 
the incorporation of deep learning techniques, this research aims to 
significantly enhance the accuracy and precision of speaker verifi-
cation. Various methodologies have been employed over the years 
to refine speaker verification processes, but it is the integration 
of deep learning methodologies that has ushered in a substantial 
and transformative advancement. The main objective of proposed 
work is to establish an automated and efficient predictive system, 
utilizing deep learning techniques, to refine the vectors essential 
for speaker verification. To achieve this goal, extensive experi-
ments were conducted using the VoxCeleb-1 database, evaluating 
the performance of different deep learning techniques. These ex-
periments involved testing various activation functions, including 
linear, sigmoid, tanh, and relu, as well as different optimizers such 
as SGD, Adam, Adagrad, and Adadelta. Our experiments revealed 
that the deep learning model achieved optimal performance when 
configured with the ReLU activation function, Stochastic Gradient 
Descent (SGD) optimizer, and employing a two-layer architecture.
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