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ABSTRACT

Nonlinear systems, commonly found in scientific research and engineering applications, present significant challenges due to 
their intricate and complex behavior, investigating the properties of non-linear systems in different scenarios, spanning over differ-
ent types of nonlinear continuous and discrete time Multi-Input Multi-Output as well Single Input Single Output control systems 
with the help of modern computational heuristics. The review seeks to elucidate the distinguishing characteristics of these systems 
as well as the role, impact, and significance of the stochastic optimization computing paradigm based on evolutionary and swarm-
ing heuristic intelligence. In addition, this text describes how randomness significantly impacts the dynamics of such deterministic 
and stochastic nonlinear systems. Mathematical modeling approaches, which are rooted in the methodological foundations of or-
dinary differential equations and input-output models from an innovation studies perspective, may offer a conceptual framework 
to integrate these complex dynamics of nonlinear systems. This study comprehensively reviews the utilization of computational 
intelligence techniques, including genetic algorithms, particle swarm optimization, firefly algorithm, ant-colony optimization, sim-
ulated-annealing, tabu search optimizer, differential evolution heuristics, artificial-bee colony optimization, and Cuckoo Search for 
parameter estimation of nonlinear systems based on Hammerstein structure.
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1.　INTRODUCTION

Parameter estimation and system identification have long 
piqued the curiosity of scientists working in both linear and nonlin-
ear fields. The interest in system identification concepts in various 
sectors of science and technology can be explained by their practi-
cal applications [1-4]. The primary goal of the systems identifica-
tion task is to estimate the equivalent model that accurately repli-
cates the behavior of the system. A standard system identification 
strategy often utilizes a gradient descent algorithm to update the 
model parameters [5-8]. The objective is to minimize the mean-
square error (M-SE) among the model and system responses. The 
most common adaptive algorithms are those that are derived from 
the least-mean square (LMS) algorithm [9-14]. Several enhance-

ments have been documented either to expedite the convergence 
or boost the precision of modeling [15-20]. In the system identifi-
cation cases mentioned earlier, the error surface is typically mul-
timodal. Using of conventional gradient-descent approach may 
result in a less than optimal solution [21]. One way to overcome 
the limitations of conventional gradient-descent algorithms for 
system identification is to reframe the task as optimization prob-
lem. This problem can then be solved using a structured stochastic 
search strategy, like swarm-based and evolutionary-computing 
algorithms [22-25]. Several studies have explored the use of SI 
and evolutionary-based computer techniques to identify linear and 
non-linear systems [26-29].

This paper aims to comprehensively review the utilization 
of computational intelligence techniques, including genetic al-
gorithms (GAs), particle swarm optimization (PSO), firefly al-
gorithm (FFA), ant-colony optimization (A-CO), simulated-an-
nealing (SA), tabu search optimizer (TSO), differential evolution 
heuristics (DEH), artificial-bee colony optimization (ABCO), and 
Cuckoo Search algorithm (CSA), for the purpose of identifying 
Hammerstein systems. Furthermore, aside from the numerous of-
fline applications of SI and evolutionary-bases computing algo-
rithms that are based on the principles of system identification, 
Other interconnected domains of systems engineering, such as 
active noise control (ANC) systems, have also recorded multiple 
online case studies, including controller design [30-32]. An ANC 
system using PSO has been introduced in reference [33, 34]. Ad-
ditionally, nonlinear variants of the system have been documented 
in references, and a multichannel version has also been described 
in [35-39]. An online system identification approach, basing quan-
tum-behaved PSO, has been utilized to control the quality of ser-
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vice provided by a web server, wireless networks and multiple 
engineering problems [40-44]. This work aims to provide readers 
with an overview of popular swarm and evolutionary computing 
methods are employed for solving non-linear system identification 
problems. For instance, the algorithms are visualized as a single 
flow diagram with numerous parallel paths, as depicted in Figure 
1. The diagram includes not only GAs, DE algorithm, PSO along 
with cuckoo search algorithm (CSA), which is a good suggested 
scheme for swarm intelligence. The diagram represents the treat-
ment of agents as chromosomes in the case of GA, vectors in DE, 
particles in PSO, and nests of cuckoo birds in the case of CSA. 
As indicated by the picture, the beginning procedures in all the al-
gorithms under consideration are comparable and mostly involve 
a random placement of agents throughout the search space. The 

primary distinction is in the nature-inspired sources of inspiration 
that drove the evolution of these algorithms. Moreover, the sche-
matic representation of experimental setup for the identification of 
a nonlinear system using heuristic technique is expressed in Figure 
2. 

The remaining portion of the paper is structured in the fol-
lowing manner. In Section 2, we provide a comprehensive discus-
sion of the many classifications of nonlinear systems. Section 3 is 
a concise evaluation of the difficulties encountered in identifying 
nonlinear systems and the shortcomings of conventional methods. 
The application of heuristic algorithms for nonlinear system iden-
tification using block ARX models has been evaluated in Section 
4, and the final conclusions have been presented in Section 5. 

Fig. 1　Work Flow diagram of famous heuristics



Faisal Altaf and Ching-Lung Chang and Naveed Ishtiaq Chaudhary and Taimoor Ali Khan: A Comprehensive Review of Heuristic Approaches in 
Modelling, Analysis, and Identification of Nonlinear Systems

69

Fig. 2　Non-linear system identification using heuristics

2. 　CLASSIFICATION OF NONLINEAR SYS-
TEMS

Nonlinear systems can be classified into various types based 
on their mathematical properties, behavior, and characteristics 
[45]. Here are some common types of nonlinear systems, along 
with explanations for each:

2.1　Time-Invariant Nonlinear Systems

The dynamics of these systems do not change over time. The 
mathematical relationships governing the system remain constant. 
Time-invariant nonlinear systems are often encountered in many 
real-world applications, such as mechanical systems, electronic 
circuits, and chemical processes [46-51].

2.1.1　Property of Time Invariance:

Let x(t) be input while y(t) be the output. If the system is 
time-invariant, then for any constant time delay t₀ as shown in 
Equation 1:

0 0( ) ( ( ))i iy t t f x t t− = −                                                     (1)

where f is the system’s nonlinear function. This means delay-
ing the input by t₀ simply delays the output by the same amount.

2.1.2　Mathematical Modeling

Nonlinear systems can be modeled using various techniques 
depending on the complexity. Here are two common approaches:

(i)Nonlinear Ordinary Differential Equations (ODEs): This 
method uses an equation system to describe the rate of change of 
the variables with in systems’ state. The equations include nonlin-
ear functions that represent the system’s behavior as represented 
in Equation 2.

For example:

( ) ( ) ( )( )  ,  s t f s t w t=                                                     (2)

where s(t) is the state vector, w(t) is the input, f(.) is a nonlin-
ear function representing the system dynamics.

(ii)Input-Output Model: This approach relates the system’s 
output directly to the input without explicitly describing the in-
ternal states. The relationship in is expressed through a nonlinear 
function as shown in Equation 3.

( ) ( ) ( )( )  ,  q t h s t u t=                                                      (3)

where q(t) is the output, h(.) is a nonlinear function that maps 
the state and input to the output.

2.1.3　Error Estimation:

Since real systems have imperfections, the actual output will 
deviate from the ideal output. This deviation is called the error. 
Here are two ways to estimate the error:
Norm-based Errors:

We can use norms (like L1 or L2 norm) to quantify difference 
in between the values desired output (y_d(t)) and the estimated 
output (y(t)) as expressed in Equation 4.

( )  _ ( )  _Error y desired t y estimated t= −
             (4)

Frequency-domain Errors:
If the desired and actual outputs are in the form of signals, we 

can convert them to the frequency domain using tools like Fourier 
Transform. Determining the inaccuracy in the frequency domain 
involves comparing the desired-frequency and estimated-frequen-
cy spectra.

A time-invariant nonlinear system’s block diagram usually 
has two primary blocks:

Non-linear Block (NLB): The NLB stands for the nonlinear 
function (f(.) or h(.)) of the system. It generates the output of the 
system (y(t)) from the inputs (u(t)) and (maybe) the state (x(t)).

Delay Block (DB): If the system adds a continuous time de-
lay, a delay block can be added after the input to compensate for 
the delay in the output.

The block diagram will differ based on the selected modeling 
approach (state-space or input-output) and the existence of tem-
poral delays.

Many branches of engineering, including circuit analysis, 
signal processing, and control systems, rely on a firm grasp of 
time-invariant nonlinear systems. Engineers are able to success-
fully build and analyze such systems by making use of mathemat-
ical models and error estimation techniques.

2.2　Time-Varying Nonlinear Systems:

These systems exhibit dynamics that change over time. The 
mathematical relationships governing the system evolve or are in-
fluenced by external factors or disturbances. Time-varying nonlin-
ear systems are common in dynamic environments where system 
parameters, inputs, or operating conditions vary with time, such as 
communication networks, biological systems, and adaptive con-
trol systems [52-56].

Imagine a shock absorber in a car. It behaves differently de-
pending on the speed and weight of the car (which are time-vary-
ing factors).

2.2.1　Mathematical Modeling

Modeling time-varying nonlinear systems is more complex 
than time-invariant ones. Here’s a breakdown of two common ap-
proaches:
(i)Time-Varying Ordinary Differential Equations (ODEs):

This method is similar to time-invariant ODEs, but the non-
linear functions (f(.)) now explicitly depend on time (t) as repre-
sented in Equation 5:
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( ) ( ) ( )( )  ,  ,  s t f s t w t t=                                                    (5)

Here, the system’s dynamics change with time, affecting how 
the state variables evolve.

(ii)Parameter-Varying Models:
This approach represents the system’s nonlinearities using 

parameters that vary with time. These parameters are denoted by 
p(t) and included in the model equations as expressed in Equation 
6:

( ) ( ) ( ) ( )( )  ,  ,  t h s t w t tq p=                                                    (6)

The key here is that p(t) captures the nature of the time-vary-
ing system.

2.2.2　Error Estimation

Error estimation remains vital for time-varying systems. The 
same approaches used for time-invariant systems (norm-based or 
frequency-domain) can be applied here. However, the interpreta-
tion might differ since the error can now change with time.

The block diagram for a time varying non-linear system is 
similar to the time-invariant case, with some key differences:

Time-Varying Nonlinear Block: The nonlinear block now 
explicitly shows the dependence on time (t), mathematically ex-
pressed as Equation 7:

( ) ( )( ) ( ) ( ) ( )( ),  ,    ,  ,  f s t w t t or h s t w t p t                              (7)

Time-Varying Elements: Depending on the specific system, 
additional blocks representing time-varying elements like time-de-
pendent gains or filters might be included.

The complexity of the block diagram will depend on the cho-
sen modeling approach and the specific time-varying characteris-
tics of the system.

Understanding the time-varying nonlinear systems is import-
ant to analyze the systems whose behavior changes with time. This 
is crucial in fields like aerospace engineering, where flight dynam-
ics are constantly changing, or in power systems, where load de-
mands fluctuate.

2.3　Deterministic Nonlinear Systems

These systems respond based on their state variables and 
inputs without any randomness or uncertainty involved. Their 
behavior is described by deterministic mathematical equations 
often featuring non-linear functions. You will find such systems 
frequently in physics, engineering and mathematics, where their 
reactions are predictable and well defined [57-60].

Following are the preceding affects.

2.3.1　Time-Invariance vs. Time-Varying

System can either change over time or stay consistent:
●Time Varying Systems: It means that the system’s behavior or 

characteristics can change as time goes on. Various factors can 
cause this such as external influences, time dependent non-lin-
earities etc.

●Time-Invariant: As stated earlier, the system’s behavior remains 
constant over time. The correlation between input and output re-
mains consistent.

Both systems can be deterministic subject to the output that 
can be predicted for a starting condition and given input.

2.3.2　Mathematical Modeling

The modeling methods used to determine non-linear systems 
are the same as those used for general non-linear systems, as men-
tioned earlier.
●Non-Linear Ordinary Differential Equations: This approach uses 

a set of equations with non-linear function to measure how the 
system’s variables change over time.

●Input-Output Model: In this method, the system’s output is di-
rectly linked to its input through a function which is non-linear 
in nature, without stating the internal states.

The selection of these methodologies is contingent upon the 
particular system and the intended analysis.

2.3.3　Error Estimation

Similar to general nonlinear systems, error estimation in de-
terministic nonlinear systems aims to quantify the difference be-
tween the desired and actual outputs. The same techniques, such 
as norm-based errors or frequency-domain errors, can be applied.

In such systems, errors are not random; instead, they are due 
to things like imperfections in the model, external disturbances, 
or noise.

The block diagram for a deterministic non-linear system fol-
lows the already described structure.

Non-linear Block: This block represents a system non-linear 
function. It takes the input u(t) and possibly state x(t) and produces 
the system’s output y(t).

Delay Block (Optional): A delay block can be included after 
the input if the system introduces a constant time delay.

The key point here is that the block diagram reflects the de-
terministic nature of the system, where the relationship between 
blocks is fixed and predictable.

Deterministic nonlinear systems are widely encountered in 
various fields. From the simple pendulum in mechanics to com-
plex economic models, understanding their behavior is crucial for 
analysis, prediction, and control.

2.4　Stochastic Nonlinear Systems

These systems exhibit random fluctuations or uncertainties in 
their behavior. The system’s dynamics are described by stochastic 
differential equations or probabilistic models, where randomness 
or uncertainty arises from external disturbances, noise, or inher-
ent variability. Stochastic nonlinear systems are encountered in 
diverse fields, including finance, ecology, and signal processing, 
where randomness plays a significant role in system behavior [61-
66].

Here’s a breakdown of stochastic nonlinear systems in rela-
tion to the previous concepts:

Key Characteristic: Randomness
Unlike deterministic systems, stochastic nonlinear systems 

exhibit variability in their output for the same input due to random 
fluctuations. This randomness can be caused by:

Internal Noise: Unpredictable internal processes within the 
system can introduce random variations in the output.

External Noise: External factors with probabilistic behavior, 
like measurement noise or environmental disturbances, can affect 
the system’s output.

2.4.1　Mathematical Modeling
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Modeling stochastic nonlinear systems requires incorporat-
ing the element of randomness. Here are two common approaches:

(i)Stochastic Differential Equations (SDEs):
This method extends regular ODEs by including a term rep-

resenting random noise. This term can be modeled using white 
noise or other noise processes.

(ii)State-Space Models with Stochastic Inputs:
This approach represents the system dynamics through state 

equations, but the input is considered stochastic.
Both methods allow us to analyze the statistical properties 

of the system’s output, such as mean, variance, or probability dis-
tribution.

2.4.2　Error Estimation

Error estimation in stochastic nonlinear systems becomes 
more complex due to the inherent randomness. Some of the ap-
proaches are:

Statistical-Error Measures: Statistical measures such as 
Mean Squared Error (MSE) or Root Mean Squared Error (RMSE) 
can be employed to calculate the average discrepancy between the 
intended output and the actual probabilistic outcome.

Distribution Analysis: Through the examination of the prob-
ability distribution of the error, we can gain insight into the possi-
bility of encountering particular error values.

The objective of error estimation is not only to attain a sol-
itary error-free result but rather to understand the statistical traits 
of the inaccuracy.

The block diagram of a stochastic nonlinear system is based 
on the following combination.

Non-linear Block (NB): This block represents the nonlinear 
function of the system.

Noise/Disturbance Source: An internal or external noise 
source block is included. 

Delay Block (DB): To intricate ongoing time delays the DB 
can be provided if necessary.

The block diagram illustrates the interaction between the de-
terministic nonlinearities and the stochastic factors that affect the 
output of the system.

Stochastic nonlinear systems are commonly found in a wide 
range of real-life situations. Comprehending their behavior is 
essential for activities like risk assessment, filtering, and control 
design that take into consideration the probabilistic nature of the 
outputs, from forecasting the weather with inherent complexities 
to financial markets with unpredictable oscillations.

2.5　Continuous Nonlinear Systems

The state variables of these systems are defined over contin-
uous domains, and they undergo continuous evolution through-
out time. Integral equations describe the dynamics of continuous 
nonlinear systems. Instances encompass mechanical systems reg-
ulated by Newton’s laws of motion, electric circuits explicated by 
Kirchhoff’s rules, and fluid dynamics equations [67-72].

Key Characteristics:
Continuous Changes: State and output variables, in contrast 

to discrete systems, undergo continuous change over time.
Non-linear Relationships: The relationship between input, 

state, and output is non-linear. This implies that a proportional al-
teration in the input may not lead to a proportional alteration in 
the output.

Pertinent illustrations are followed as:
Spring-mass system: The motion of a mass attached to a 

spring is governed by a continuous nonlinear differential equa-
tion. As the mass moves, its position and velocity (state variables) 
change continuously.

Chemical reaction kinetics: The rate of change of chemical 
species in a reaction can be modeled by a system of continuous 
nonlinear differential equations. The concentrations of the species 
change smoothly over time.

Control systems with continuous actuators: Control systems 
where the control signal can take on any value within a range are 
considered continuous. For example, a system controlling the tem-
perature of a furnace through a continuously adjustable valve.

2.5.1　Mathematical Modeling

The primary method for modeling continuous nonlinear sys-
tems is through:

Nonlinear Ordinary Differential Equations (ODEs): This 
method describes the rate of change of the system’s state variables 
using a system of equations with nonlinear functions. The deriva-
tives of the state variables represent their continuous change over 
time, as expressed in Equation (2). In Equation 8, s(t) is the state 
vector, w(t) is the input, and f(.) is a nonlinear function represent-
ing the system dynamics.

2.5.2　Error Estimation

The goal here is to quantify the difference of the desired-con-
tinuous output (q_desired(t)) and the estimated-continuous output 
(q(t)). The techniques include:

Norm-based Errors (NBE): The total variation between the 
two signals over time can be computed using norms.

Frequency-domain Errors (FDE): By transforming the de-
sired and estimated responses into the frequency domain, it is 
possible to examine the error based on their respective frequency 
spectrums.

The block diagram illustrates:
Nonlinear Block (NB): The block symbolizes the system’s 

nonlinear function (f(.)), which takes the input (u(t)) and state 
(x(t)) as inputs and generates the system’s output (y(t)).

Integrator Blocks (IB): Integrator blocks may be added to the 
system dynamics to incorporate integration processes within the 
differential equations, depending on the unique requirements.

The block diagram accurately represents the continuous na-
ture of the signals and the continuous interaction between the in-
put, state, and output.

Engineers can utilize their understanding of continuous 
non-linear systems to efficiently design, control, and optimize sev-
eral systems in domains such as mechanics, control engineering, 
and chemical processes, where continuous processes are wide-
spread.

2.6　Discrete Nonlinear Systems

These systems evolve in discrete steps or time intervals, and 
their state variables are defined at discrete points in time. The dy-
namics of discrete nonlinear systems are described by difference 
equations or recursion relations. Discrete nonlinear systems are 
well exploited by the research community in various field of net-
work security, PID controller and many more including digital 
control systems, discrete-time signal processing systems, and iter-
ated maps in chaos theory [73-78].

Here’s a breakdown of their key characteristics:
Key Characteristics:
Discrete Changes: The system’s state and output change 
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only at specific intervals of time. These changes can be significant 
jumps from one value to another.

Nonlinear Relationships: The relationship between input, 
state, and output is not linear. A proportional change in the input 
might not result in a proportional change in the output at the next 
time step.

Some of the examples are as follows:
Bouncing ball: The height of a bouncing ball can be modeled 

as a discrete nonlinear system. The ball’s height changes only at 
the moments it hits the ground or another object.

Population growth model: Some models for population 
growth track population size at specific intervals (e.g., yearly). 
These models can be nonlinear to account for factors like birth 
rates and death rates.

Digital control systems: Control systems that use digital sig-
nals with discrete values (e.g., on/off) are considered discrete.

2.6.1　Mathematical Modeling

There are two main approaches to modeling discrete nonlin-
ear systems:

Nonlinear Difference Equations: These equations relate the 
state of the system at one time-step (m) to the previous state at 
time-step (m-1) and the input applied at the current time step. They 
involve nonlinear functions that capture the system’s behavior as 
shown in Equation 9.

( ) ( ) ( )( )1   ,  s m f s m w m+ =                                           (8)

where s(m) is the state at time-step m, w(m) is the input at 
time-step m, and f(.) is a nonlinear function.

Input-Output Models: Similar to continuous systems, these 
models relate the system’s output directly to the input through 
a nonlinear function, without explicitly describing the internal 
states. However, the function operates on discrete-time values.

2.6.2　Error Estimation

Since the system operates in discrete time steps, error esti-
mation focuses on the difference amongst the desired response at 
each time-step (q_desire(m)) and the estimated response (q_esti-
mated(m)). The same approaches used for continuous systems can 
be applied here, but adapted for discrete time:

Norm-based Errors: We can calculate norms to quantify the 
overall difference between the desired and actual output sequenc-
es.

Frequency-domain Errors (applicable in some cases): If the 
desired and actual outputs can be represented as periodic sequenc-
es, they can be converted to the frequency domain using tools like 
the Discrete Fourier Transform (DFT). The error can then be ana-
lyzed in terms of the frequency spectrum.

The block diagram for a discrete nonlinear system typically 
consists of:

Nonlinear Block: This block represents the system’s nonlin-
ear function (f(.) or h(.)) that takes the input (u(k)) and possibly 
the state (x(k)) as input and produces the system’s output (y(k)).

Unit Delay Block(s): These blocks delay the input and/or 
state by one time step to account for the discrete nature of the 
system.

The block diagram reflects the discrete jumps in the signals 
and the non-linear rapport amongst input, state, and the output at 
each time step.

Understanding discrete nonlinear systems is crucial in var-

ious fields that involve digital processing and control. From an-
alyzing communication systems to designing control algorithms 
for robots, these systems play a vital role in modern technology.

2.7　Non-linear Single Input Single Output (SISO) Systems

These systems have a single input and a single output, where 
the input-output relationship is characterized by nonlinear dynam-
ics. SISO nonlinear systems are common in many engineering ap-
plications, such as feedback control systems, servo systems, and 
nonlinear filters [79-82].

Here’s a breakdown of key aspects of SISO Nonlinear Sys-
tems:

Imagine a system where you can adjust one knob (input) and 
observe the corresponding effect on a single gauge (output). This 
is the essence of a SISO system. However, the relationship be-
tween the knob (input) and the gauge (output) is not always pro-
portional or linear. This nonlinearity adds complexity in analyzing 
and controlling the system’s behavior.

Some of the examples are as follows:
Temperature control system: Here, the input could be the 

control signal sent to a heater (e.g., percentage of power) and the 
output the measured room temperature. The relationship between 
heater power and temperature might not be perfectly linear, espe-
cially at extreme settings.

Chemical reaction: The amount of a reactant introduced (in-
put) can affect the rate of a chemical reaction (output). However, 
the reaction rate might not increase proportionally with the added 
reactant due to factors like saturation effects.

2.7.1　Mathematical Modeling

Modeling SISO nonlinear systems can be achieved through 
various methods depending on the complexity:

Nonlinear Ordinary Differential Equations (ODEs): This 
method describes the system’s dynamics using a system of equa-
tions with nonlinear functions relating the rate of change of the 
system’s state (internal variables) to the input and the output as 
shown in Equation 2. where s(t) is the state vector, w(t) is the input, 
and f(.) is a nonlinear function representing the system dynamics.

Input-Output Model: This approach focuses directly on the 
relationship between the input and output, bypassing the internal 
states. Here, a nonlinear function maps the input to the output ex-
pressed as Equation 11.

( ) ( )( )  q t h w t=                                                                (9)

where q(t) is the output and h(.) is a nonlinear function repre-
senting the input-output relationship.

2.7.2　Analysis and Control

Nonlinear systems present greater challenges in terms of 
analysis and control compared to linear systems. Here are a few 
prevalent methods:

Linearization: Under some circumstances, the system’s be-
havior can be estimated as linear in the vicinity of a particular 
operational point. This enables the utilization of linear control ap-
proaches for streamlined analysis.

Nonlinear Control Techniques: To manage the non-linearities 
several strategies have been developed. The strategies include the 
use of feedback control for incorporating nonlinear components 
based on optimization.
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SISO non-linear system has following blocks:
The non-linear block (NB) represents the system’s nonlinear 

function (f(.) or h(.)) that takes the input (u(k)) and possibly the 
state (x(k)) as input and produces the system’s output (y(k)).

The optional block displays the non-linear function of the 
system. It is denoted as f(.) or h(.). It takes the input (u(t)) and (op-
tional) the state (x(t)) and produces the output (y(t)) of the system.

Single input path and a single output path block diagram 
has been illustrated above. Where the central block is a nonlinear 
transformation function that connects the input to the output.

Understanding single-input single-output (SISO) nonlinear 
systems is essential for optimizing different real-world systems 
that exhibit non-linear behavior. For effectual design and opera-
tion, non-linear behavior must be wisely considered in systems 
ranging from basic temperature control systems to sophisticated 
chemical reaction processes.

2.8　Non-linear Multi-Input Multi-Output (MIMO) Sys-
tems

These systems possess a multitude of inputs and outputs, 
wherein the interactions between inputs and outputs are regulated 
by non-linear relationships. MIMO non-linear systems are present 
in intricate engineering systems that consist of several intercon-
nected subsystems, such as robotic manipulators, chemical pro-
cess plants, and communication networks [83-88].

The breakdown of key features of MIMO Non-linear Sys-
tems are given as:

Consider a system that consists of several knobs for input 
and multiple gauges for output. Manipulating a single knob can 
influence not just the gauge it is directly connected to, but also 
other gauges to different extents. Furthermore, the correlation be-
tween each knob and each gauge is not consistently proportionate 
or linear. This intricacy results from the dynamics of the system 
being interrelated.

Here are a few examples:
Flight control system (FCA): An airplane’s control system 

comprises many inputs, such as ailerons, elevators, and rudders, 
which influence its motion in different manners, including changes 
in altitude, roll, and yaw. These relationships exhibit nonlinearity, 
particularly when operating at high speeds or during maneuvers.

Chemical plant: Within a chemical plant, the manipulation 
of several valves that regulate the movement of different reactants 
can have an impact on multiple characteristics of the end products, 
such as temperature, pressure, and purity. The interplay between 
these fluxes can introduce non-linearities in the properties of the 
final output.

2.8.1　Mathematical Modelin

Modeling MIMO nonlinear systems can be achieved through 
various methods:

Nonlinear Ordinary Differential Equations (ODEs): This 
method uses a system of equations with nonlinear functions to 
describe the systems’ dynamics. Here, the rate of change of each 
state variable depends not just on the current state but also on all 
the input variables as expressed in Equation 2. where s(t) is the 
state vector, w(t) is the input vector (containing all input values), 
and f(.) is a vector-valued nonlinear function representing the sys-
tem dynamics.

Input-Output Model: This approach directly relates each out-
put to all the inputs through nonlinear functions. Mathematically, 
given as Equation 13. 

( ) ( )( )  q t h w t=                                                               (10)

The output vector q(t) contains all output values, while the 
vector-valued nonlinear function h(.) represents the input-output 
relationships.

2.8.2　Analysis and Control:

Researchers are actively working on methods to analyze 
and control MIMO nonlinear systems. Below are a few prevalent 
methodologies:

Linearization: Linearization refers to the process of approxi-
mating a nonlinear function with a linear function to simplify cal-
culations or analysis. 

Multivariable Control Techniques: These methods are tai-
lored for MIMO systems. In this method the system has multiple 
inputs and outs. Illustratively it encompass state-space control and 
model predictive control.

Non-linear Control Techniques: Techniques such as integrat-
ing nonlinear aspects into feedback control or by using of opti-
mization-based methods to directly address multiple-input multi-
ple-output (MIMO) non-linearities.

The blocks used in MIMO non-linear systems are:
Nonlinear Block (NB): The function takes the input vector 

(w(t)) and, optionally, the state vector (s(t)) as input and generates 
the output vector (q(t)). The block comprises non-linear functions 
that transform inputs into outputs.

Optional Blocks: Optional blocks to accommodate certain 
dynamic attributes.

MIMO nonlinear systems, ranging from flight control sys-
tems to chemical process management, necessitate the utiliza-
tion of sophisticated analysis and control approaches to guarantee 
maximum performance.

2.9　Chaotic Nonlinear Systems

These systems display a high sensitivity to beginning con-
ditions, deterministic chaos, and complicated dynamic behavior 
that is characterized by irregular, non-repetitive, and unpredict-
able paths. Chaotic nonlinear systems are governed by nonlinear 
equations with simple deterministic rules but exhibit highly com-
plex and unpredictable behavior over time. Chaotic nonlinear sys-
tems have been exploited in control system, signal processing and 
quantum system [89-93]. Examples include the Lorenz system, the 
double pendulum, and certain electronic circuits.

They are characterized by three key features:
Sensitive Dependence on Initial Conditions (Butterfly Ef-

fect): Even tiny changes in the initial state of a chaotic system 
can lead to drastically different outputs over time. This is often 
described metaphorically as the “butterfly effect,” where a butter-
fly flapping its wings in one place can eventually cause a tornado 
in another.

Aperiodic Long-Term Behavior: Unlike periodic systems 
(outputs repeat after a fixed time) or convergent systems (outputs 
settle to a specific value), chaotic systems never settle into a pre-
dictable pattern. Their outputs appear random, but they are still 
determined by the initial conditions and the system’s rules.

Boundedness: Chaotic systems do not demonstrate exponen-
tial growth or decay. In spite of their apparent instability, their out-
puts remain within a finite range.

The key features of the system are illustrated in examples as 
given below:

The Double-Pendulum: This exemplary demonstration com-
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prises of a pair of pendulums that are interconnected. Slight al-
terations in the initial beginning angles can result in significantly 
divergent swinging patterns as time progresses.

Population-Dynamics: Predator-prey interaction models can 
display chaotic dynamics, where even slight variations in starting 
population sizes can result in unpredictable and erratic fluctuations 
over time.

Weather Systems: The intricate interplay among tempera-
ture, pressure, humidity, and wind in the atmosphere gives rise 
to a turbulent system. Although the fundamental rules of physics 
are clearly established, accurately forecasting long-term weather 
patterns becomes progressively difficult because of the high sensi-
tivity to initial conditions.

2.9.1　Mathematical Modeling

Chaotic systems can be represented using the same method-
ologies as other nonlinear systems, such as:

Nonlinear Ordinary Differential Equations (ODEs): These 
equations describe the rate of change of the system’s state vari-
ables, but the functions involved may be highly complex and sen-
sitive to initial conditions.

2.9.2　Analysis and Prediction

Understanding and forecasting the actions of chaotic systems 
is difficult because of their extreme sensitivity and lack of periodic 
patterns. Here are several methods:

Statistical Analysis: This technique includes investigative 
data through statistical measures to get a logic of its overall fea-
tures, such as average values and the likelihood of various out-
comes.

Chaotic non-linear systems are found in both natural and 
man-made settings. Following are the few examples:

Climate modeling includes the studying the behavior of 
weather systems helps improve long-term climate forecasts and 
assess the impact of global warming.

Economics includes financial markets often display that pat-
tern, by understanding this, helps investors in developing strate-
gies for managing risk.

Secure Communication using chaotic systems can generate 
pseudo-random sequences for encryption to enhance communica-
tion security.

Bifurcation Diagrams illustrates shifts from a state of order to 
a state of disorder and pinpoint areas in the parameter space where 
chaotic behavior takes place.

Numerical Simulations involves computer-based simulation 
to explore the behavior of system followed by different trends and 
pattern.

3.　CHALLENGES OF NON-LINEAR SYSTEM 
IDENTIFICATION AND LIMITATIONS OF 
TRADITIONAL METHODS

Mathematical modeling of a non-linear system is often more 
difficult to find as compared to a linear system owing to multiple 
factors like:
●Non-linear models generally need more data than linear models. 

This data must accurately reflect the system’s various operating 
conditions and behaviors.

●A model that’s too complex might fit the data too closely, while 
a simpler one might miss important non-linear aspects of the sys-

tem.
●Non-linear systems can often be described by several different 

models, making it hard to pinpoint a single, definitive one.
Although a non-linear model can be successfully created but 

there remain certain limitations.
●The model might have some errors with respect to the real sys-

tema and that may lead to decrease the or effect the system’s 
performance.

●The model might work well under certain conditions but could 
lose accuracy in different scenarios.

●While the model can predict behavior, it might not always ex-
plain the fundamental physical processes, which bounds our un-
derstanding of the system.

●Real-world data often contains noise. Non-linear methods are 
more affected by this noise than linear ones, which can impact 
the model’s accuracy.

●Working with non-linear systems, especially complex models, 
can be computationally intensive.

Feature Challenges Limitations

Focus Difficulty of the 
identification process

Aspects of the identified 
model

Examples Non-uniqueness, 
data requirements

Model accuracy, gen-
eralizability, physical 
meaning

Impact Difficulty in obtain-
ing a reliable model

Limitations in using the 
model for prediction, 
control, or analysis

4.　HEURISTIC ALGORITHMS FOR IDENTIFY-
ING NONLINEAR SYSTEMS USING BLOCK 
ARX MODELS

This section elaborates how heuristics-based optimization 
techniques are exploited to estimate the parameters in ARX mod-
els. Generally, the standard ARX models outrightly performs well 
for linear system, Block ARX models are tailor-made to cope the 
difficulties of non-linear behavior. Estimating of parameters in 
these models can be complicated owing to the complex nature of 
non-linear functions. In this study we will explore various heuris-
tics methods to deal with the challenges.

4.1　Limitations of Traditional Optimization Methods

Prior to make investigation about the heuristic algorithms, it 
is important to understand the constraints of traditional optimiza-
tion methods. The least square methods are effective for the linear 
ARX models they struggle with Block structured ARX models 
having non-linear elements.  In such scenario the objective func-
tion will become non-convex, causing traditional methods to get 
stuck in sub-optimal solutions due to multiple local minima. 

4.2　Advantages of Heuristic Algorithms

Heuristics based algorithms are strong alternative for the es-
timation of parameters in Block ARX models. The heuristics are 
inspired by the natural processes and these algorithms use itera-
tive techniques in order to explore the complex search space and 
are overwhelmed to the traditional methods. They are flexible and 
need minimal information about the problem. The heuristic algos 
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are good at result solutions in solving complex problems which 
helps in getting better performance for block ARX models.

4.3　Common Heuristic Algorithms for Block ARX Model 
Parameter Estimation

In this section some of the commonly used heuristics algos 
used for solving the parameter estimation problem are elaborated. 

4.3.1　Genetic Algorithm (GA)

GA simulates natural selection and genetic recombination 
to solve difficult optimization and search problems. A genetic al-
gorithm evolves a population of candidate solutions, represented 
as chromosomes or individuals, through selection, crossover, and 
mutation. Genetic algorithms use selection pressure and genetic 
operators to enhance population solutions and converge on opti-
mal or near-optimal solutions. Engineering, computer science, 
economics, and biology employ genetic algorithms to solve op-
timisation issues where standard methods are inefficient or unfea-
sible[94-100].

Pseudocode:

Function GAs(population, fitness_function, max_generations)
For i in range(max_generations):

Select parents from population based on fitness
Perform crossover on parents to create offspring
Introduce mutations to offspring with a low probability
Evaluate fitness of offspring
Combine offspring with parents to form new population
Return best individual in final population

End Function

4.3.2　Particle-Swarm Optimization (PSO)

Particle Swarm Optimization (PSO) is a computational meth-
od inspired by the way flocks of birds or schools of fish move 
together. In PSO, a group of potential solutions, called particles, 
move through the search space to find the best solution for a given 
problem. Each particle represents a possible solution and adjusts 
its position and speed based on its own past experiences and the 
experiences of nearby particles.

PSO relies on swarm intelligence, where particles interact 
and share information to find the best solution. Each particle has 
its position, speed, and best-known solution, and particles are in-
fluenced by the global best solution found by any particle in the 
swarm.

Particles’ movement in the search space is guided by both 
individual and collective factors. Cognitive factors encourage 
particles to improve their own best solutions, while social factors 
push them to consider the best solution found by the group. Accel-
eration coefficients help balance the search between exploring new 
areas and exploiting known good solutions.

By using both local and global information, PSO effectively 
explores and exploits the search space, often finding optimal or 
nearly optimal solutions.

The SI-based PSO algorithm is widely used in various op-
timization issues, including function optimization, parameter 
tuning, machine learning, and engineering design [101-106]. The 
reason for its effectiveness lies in its directness, effectiveness, and 
capacity to handle intricate and high-dimensional optimization 
tasks that encompass nonlinearity. 

Velocity Update:
Equation 11 determines the speed and direction of each par-

ticle in the next iteration.
( ) ( ) ( ) ( )( )

( ) ( )( )
   *  1   1 *   *  1   1  ...

 2 *   *    1

()

()
i i i cl

sl global

v t v t c rand pbest t x t

c rand g best t x t

ω= − + − − −

+ − −                                                             
(10)

where:
● vi(t)- particle velocity at iteration t
● vi(t-1)- velocity of particle at previous iteration (t-1)
● ωi- inertia weight (controls momentum of particles)
● ccl1- cognitive learning rate (importance of individual experi-

ence)
● csl2- social learning rate (importance of swarm knowledge)
● rand()- random number between 0 and 1
● pbesr (t-1) - best position found by the particle itself up to iter-

ation t-1
● x(t-1)- current particles’ position at iteration t-1
● gglobalbest- best-position found by the entire swarm up to itera-

tiont
Position Update:
Equation 12 determines particles’ new position based on its 

current position and the updated velocity.

( ) ( ) ( )  1   new current ix t x t v t= − +                                                                  (12)

where:
● xnew(t)- new position of the particle at iteration t
● xcurrent (t-1)- current particles’ position at iteration t-1
● vi(t)- particle updated velocity at iteration t

Pseudocode:

Function PSO(population, fitness_function, max_iterations)
Initialize particles’ positions and velocities
For t in range(max_iterations):

Evaluate individual particle fitness
Update pbest for each particle
Update gglobalbest for the entire swarm
Update vi(t) of each particle
Update xnew(t) of each particle

Return best particle in final population
End Function

Applications: PSO finds applications in various scientific and 
engineering domains, including:

Control System Design: Optimizing controller parameters 
for complex systems.

Power System Optimization: Optimizing power flow and sta-
bility in nonlinear power systems.

Machine Learning: Hyperparameter tuning in machine learn-
ing algorithms with nonlinearities.

Image Processing: Image segmentation and feature extraction 
tasks involving nonlinearities.

Robotics: Path planning for robots in complex environments.

4.3.3　Firefly Algorithm (FA)

In 2008, Xin-She Yang introduced the Firefly Algorithm 
(FA), a metaheuristic optimisation method that takes its cues from 
the flashing actions of fireflies[107]. In FA, potential answers are 
depicted as fireflies navigating the search space, with the bright-
ness of each fly indicating its fitness value. Fireflies are drawn to 
lights that are brighter than their surroundings, and the degree of 
this attraction decreases as the distance between the lights increas-
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es. Exploring the search space and convergent towards optimal 
or near-optimal solutions, fireflies migrate towards brighter indi-
viduals through repeated updates. The simplicity and efficacy of 
FA in handling complex and multimodal landscapes have led to 
its widespread application to optimisation challenges. Efficiently 
managing environments that are both complex and multimodal.

FA has been employed for parameter optimisation in various 
engineering design fields, such as structural optimisation, mechan-
ical design, and electromagnetic optimisation, image processing, 
picture augmentation, feature extraction, pattern identification, 
machine learning and artificial intelligence, neural networks, eco-
nomics and finance to optimise portfolios, control risks, forecast 
financial outcomes, bioinformatics and computational biology for 
tasks such as predicting protein structures, aligning sequences, and 
optimising biological networks [108-112]. In summary, the Firefly 
Algorithm’s wide range of applications makes it a powerful tool 
for solving optimisation problems in several areas of study and 
industry. The weight update relation is given in Equation 13.

Weight Update Equation (Attraction):

 ( ) ( )   *  ^ 2r exp rβ λ= −                                                             (13)

where:
● β(r) - attractiveness at distance r
● λ - light absorption coefficient

4.3.4　Ant Colony Optimization (ACO)

Ant Colony Optimisation (ACO) mimics foraging behavior 
of how ants deposit pheromone trails while searching for food. 
Artificial ants explore the search space, leaving “trails” based on 
solution quality [113]. This guides the search towards promising 
regions.

ACO has been utilised in diverse domains to address intri-
cate optimisation challenges, data transmission channels in rout-
ing and networking, reducing latency and congestion in computer 
networks, transportation, and telecommunications, vehicle routing 
problem (VRP) and travelling salesman problem (TSP),supply 
chain management, resource allocation, and production schedul-
ing in manufacturing and operations, robotics, swarm coordina-
tion, and multi-robot systems, hence enabling efficient navigation 
and collaboration in intricate situations [114-120]. These applica-
tions showcase the adaptability and efficacy of ACO in addressing 
a wide range of optimisation difficulties across several sectors. 
The recursive mathematical expression is given as Equation 14.

Weight Update Equation (Pheromone Update):

( ) ( ) ( )  1 /   *  ij Q ijτ ρ∆ = ∆                                                            (14)

where:
● Δτ(ij) - change in pheromone level on path (i,j)
● ΔQ(ij) - quality of solution found on path (i,j)
● ρ - pheromone evaporation rate

4.3.5　Simulated Annealing (SA)

Simulated Annealing (SA) is a stochastic optimisation ap-
proach that draws inspiration from the annealing process observed 
in metallurgy [121]. It is utilised to discover nearly optimal solu-
tions to combinatorial optimisation issues by simulating the pro-
cess of cooling a material to achieve a state of low energy. The 
optimisation problem is viewed as a symbolic energy landscape 

in SA, with the objective function standing in for the system’s en-
ergy. In an iterative fashion, the method takes an initial solution 
and uses it to explore the solution space by making minor random 
adjustments. These changes are approved or rejected based on a 
probability distribution, helping the algorithm avoid local opti-
ma and better search space exploration. As the method advances, 
the chance of accepting inferior answers drops with time, similar 
to the cooling process in annealing. SA keeps on in this iterative 
manner until a stopping criterion is satisfied, which usually hap-
pens when a predefined iterations have been finished or a specific 
degree of convergence has been attained. Simulated Annealing is 
renowned for its capacity to tackle intricate and multifaceted opti-
misation terrains, rendering it a favoured option for a diverse array 
of optimisation issues in numerous domains, such as engineering, 
finance, and artificial intelligence [122-125]. The weight update is 
equation is given as Equation 15.

Weight Update Equation (Metropolis Criterion - Probability 
of Accepting Uphill Move):

( ) ( )  0    /  P E exp E T∆ > = −∆                                                         (14)

where:
● ΔE - difference in cost function between new and current solu-

tion
● T - temperature (cooling parameter)

4.3.6　Tabu Search (TS)

The Tabu Search (TS) algorithm is a meta-heuristic optimis-
ation technique that effectively maps solution spaces by iteratively 
transitioning between different solutions[126]. The system retains 
a temporary memory, referred to as the tabu list, in order to avoid 
repeating solutions that have been previously visited and to direct 
the search towards potentially fruitful areas within the solution 
space. Tabu Search effectively navigates intricate optimisation 
landscapes and identifies nearly optimum solutions to combina-
torial optimisation problems by skillfully balancing exploration 
and exploitation. Tabu Search (TS) has been utilised in diverse 
domains, encompassing logistics and supply chain management 
for the purpose of optimising transportation routes, production 
scheduling, and inventory management. Additionally, it has been 
applied in telecommunications, networking, network design opti-
misation, routing optimisation, resource allocation optimisation, 
finance, portfolio optimisation, asset allocation optimisation, risk 
management, and investment strategy optimisation[127-132]. 
These applications demonstrate the adaptability and efficacy of 
Tabu Search in addressing various optimisation problems in prac-
tical situations.

4.3.7　Differential Evolution (DE)

In order to efficiently explore and exploit the search space, 
Differential Evolution (DE) iteratively refines a population of 
possible solutions by combining and mutating individuals. This 
stochastic optimisation technique is inspired by natural selec-
tion[133]. Differential Evolution (DE) has been extensively uti-
lised in diverse domains of engineering, encompassing optimis-
ation of mechanical and structural systems, parameter tuning in 
control systems, optimisation of electromagnetic devices, machine 
learning, data mining, feature selection, hyperparameter optimisa-
tion, neural network training, finance, risk management, algorith-
mic trading strategies, image processing for image segmentation, 
object detection, and image reconstruction tasks [134-139]. DE is 
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a versatile technique for solving many optimisation difficulties in 
real-world applications due to its versatility, simplicity, and effi-
cacy.

4.3.8　Artificial Bee Colony (ABC) Optimization

Artificial Bee Colony (ABC) A metaheuristic method known 
as optimisation draws inspiration from the foraging behaviour 
seen in honeybee colonies [140]. To solve optimisation challenges, 
it simulates artificial bees exploring and exploiting food sources. 
Artificial bees search ABC by iteratively changing the positions 
of candidate solutions, which are food sources. The algorithm 
contains three phases: employed, onlooker bee phase, and scout 
bees. Artificial bees use local information to improve food sup-
plies during the employed bee phase. In the observer bee phase, 
artificial bees communicate potential food source knowledge and 
choose new food sources to explore. For population diversity, ar-
tificial bees randomly explore for new food sources in the scout 
bee phase. ABC effectively finds high-quality solutions to optimi-
sation problems in engineering design, scheduling, image process-
ing, and financial portfolio optimization [141-146].

4.3.9　Cuckoo Search (CS)

The Cuckoo Search (CS) algorithm is a metaheuristic opti-
misation technique that draws inspiration from the reproductive 
behavior observed in cuckoo birds, particularly the brood parasit-
ism method employed by certain species of cuckoos [147]. The CS 
algorithm employs nests as representations of candidate solutions, 
with the objective of repeatedly enhancing the positions of these 
nests within the search space in order to identify the ideal solution. 
In the process of optimisation, cuckoo birds deposit eggs within 
their nests, symbolizing candidate solutions. Each individual egg 
serves as a potential solution to the optimisation problem at hand. 
The evaluation of egg quality is conducted by the utilization of 
a fitness function, whereby cuckoos employ a probabilistic pro-
cess to replace eggs within their nests with superior alternatives. 
Furthermore, cuckoos have the ability to engage in random nest 
investigation as a means of preserving population variability. The 
Cuckoo Search algorithm has been utilized in diverse optimisa-
tion domains, including engineering design, image processing, 
wireless sensor networks, and machine learning. Its efficacy in 
efficiently identifying optimal or near-optimal solutions has been 
well-documented [148-152].

Mathematical Equations:
●Lévy Flight: CS utilizes Lévy flights, a random walk pattern with 

heavier tails compared to standard Brownian motion. This allows 
for efficient exploration of the search space, particularly for long 
jumps.

●Discovery and Replacement: A probability determines if a cuck-
oo (solution) lays its egg (new solution) in a randomly chosen 
nest (existing solution). Another probability determines if a host 
bird discovers the foreign egg and abandons the nest.

Pseudocode:

Function CS(population, fitness_function, max_generations)
Initialize cuckoo positions (candidate solutions)
For i in range(max_generations):

Evaluate fitness of each cuckoo
Generate new cuckoo solutions using Lévy flights
Replace a fraction of worse nests with new solutions based 

on a discovery probability
Abandon a fraction of nests with low-quality solutions

Return best cuckoo in final population

End Function

4.4　Choosing the Right Heuristic Algorithm

The choice of the optimal heuristic algorithm for a given 
Block ARX model identification challenge is contingent upon var-
ious factors like model complexity, cost function landscape, do-
main knowledge, convergence speed and implementation difficul-
ty. Algorithms exhibits different behavior with respect to the above 
mentioned complexities. For instance, GA and PSO performs ef-
fective for simple models. However, SA and FFA can handle with 
complex models. SA and TS perform well for functions with local 
minima. GA and PSO are efficient, balancing exploration and ex-
ploitation to converge faster with clear minima. The ABC algo-
rithm performed well for domain knowledge.  

Choosing the right heuristic algorithm involves understand-
ing these factors and matching them to the specific needs of your 
Block ARX model. Experimenting with different algorithms may 
be necessary to find the best fit.

For up-to-date advancements in nonlinear system identifi-
cation, including Hammerstein systems, the Web of Science is a 
valuable resource. It offers a comprehensive database of journals, 
conference proceedings, and papers, along with tools for literature 
reviews and keeping up with recent developments.

Data was collected using Web of Science categories dated 
April 21, 2024, at 1930HRS. According to the Web of Science 
total number of articles published in 250 fields of research 236,569 
have been published from 2014 to 2024. The clustere

d column chart for the top 10 of the selected categories has 
been plotted in Figure 3. 

Fig. 3　Bar chart representation of web of science categories 
against publication count

The record shows that the out the maximum research in terms 
of system identification the maximum research has been carried 
out in the field of Electrical Engineering that is 9.9% of the total 
number of publications in 249 fields. Similarly, remaining fields of 
research have the significant contribution resulting in producing 
236,569 publications. In order to further investigate the contribu-
tion of research community region wise it can be seen in Figure 4 
that about 28.74% of total number of publications has been con-
tributed from Peoples Republic of China, while the contribution of 
research community of USA is 23% and the trend shows declining 
trend as we move down. The trend can be witnessed as shown in 
Figure 4.
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Fig. 4　Region wise statistics of system identification related 
publications

In order to analyze the research inclination in perspective 
of non-linear systems identification. The contribution of research 
community as of the information available on web of science Fig-
ure 5 shows that there are 12,245 and while the distribution ac-
cordingly in respect to the different field of research are shown in 
Figure 5 as Pie Chart. The data shows that 27% of 12,245 publica-
tions has been contributed by the research community in the field 
of electrical engineering while 17% in the field of Automation and 
control,14% by the Mechanical Engineering community while 
11% in the field of Mechanics, Computer science and artificial in-
telligence, engineering multi-disciplinary, Instruments Instrumen-
tation contributed 7% while, Mathematics and Civil Engineering 
has 6% and 5% contributions.

Fig. 5　Pie chart distribution representing web of science 
categories

Moreover, the further investigation in term of yearly publi-
cations to elaborate the trend of research community in nonlin-
ear system identification. Figure 6 shows that yearly publication 
trend the particular field and it has been observed that starting from 
2014 the number of publications were 792, while on going years 
shows an increasing trend of publication in the specific field in 
the preceding years till 2022 and reported publications were 1588. 
However, in 2023 the number of publications were 1535. The web 
of science record shows that since April 21, 2024 the publication 
are 338.

 Fig. 6　Bar chart distribution representing yearly publica-
tions related to non-linear system identification

5.　PROPOSED FUTURE PROSPECTIVE

Researchers and practitioners in the field are continuously 
addressing these challenges through the development of bench-
mark datasets for rigorous evaluation, the incorporation of hybrid 
approaches that combine heuristics with other methodology, and 
the utilisation of increasingly intricate heuristic methods. The 
aforementioned challenges may be mitigated via the progression 
of knowledge and technology; yet, it remains imperative to con-
sider them while employing heuristics for parameter estimation in 
nonlinear Hammerstein systems.

Potential avenues for future research in heuristic-based pa-
rameter estimation of nonlinear Hammerstein models involve ad-
dressing existing challenges and using state-of-the-art technology. 
Here are potential future directions that heuristics in the field of 
system identification of non-linear systems may take:
●To develop hybrid models, it is necessary to integrate heuristics 

with advanced techniques such as machine learning algorithms 
or optimization approaches. The precision and effectiveness of 
estimating nonlinear Hammerstein models can be enhanced by 
integrating the benefits of multiple procedures.

●Develop adaptable heuristics capable of modifying system iden-
tification features. One important aspect to consider is the ability 
to accurately estimate the parameters of an unknown non-linear 
Hammerstein model.

●Make developing real-time heuristics a top priority. This is pri-
marily significant for quickly resolving the system identification 
problem when resembling parameters of non-linear systems.

●Developing Clear Heuristics: the purpose is to create heuristics 
that deliver accurate and easily explainable results. It’s vital to 
build reliable and meaningful models, particularly for important 
applications.

By using these approaches, researchers and practitioners 
can improve the application of heuristic techniques in identifying 
non-linear Hammerstein models. This will aid advance the reli-
ability, flexibility, and accuracy of parameter estimates in complex 
systems, including areas like the human nervous system, brain sig-
naling, etc.
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6.　CONCLUSIONS

This study presents a thorough review of non-linear systems 
and implications of system identification of non-linear systems. 
Moreover, the optimization based computational techniques like 
GAs, PSO, FFA, A-CO, SA, TSO, DEH, ABCO and CSA have 
been elaborated in term of their wide utilization in solving numer-
ous scientific problems and their use in system identification of 
non-linear systems. This article might serve as convenient refer-
ence for researcher in the field of computational intelligence.
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