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ABSTRACT

This study provides an inclusive review of the vigorous identification of the Hammerstein-output error system (HOES). The 
mean-square-error-based fitness function is used to explore the efficacy of the mountain gazelle optimization algorithm (MGO). 
The auxiliary-model with the key-term separation principle is combined to approximate the parameters for accurately identifying 
complex parameters of the system. The efficacy of the nature-inspired heuristic optimization algorithm i.e., the mountain gazelle op-
timization algorithm is exploited for the Hammerstein-output error system (HOES) and is evaluated through accuracy, convergence 
speed, and estimation of actual parameters as compared with three states of the art algorithms that are whale-optimization algorithm 
(WOA), grey-wolf optimization algorithm (GWO), and arithmetic-optimization algorithm (AO).

Keywords: Nonlinear systems; Hammerstein-output error model; System identification; Optimization technique; Mountain gazelle 
algorithm.

1.　INTRODUCTION

Nonlinear systems are complex [1-2] because their behav-
ior doesn’t follow a straight line, making them harder to predict. 
The systems can show unexpected patterns, which are similar 
to real-world processes. The Hammerstein structure is a type of 
nonlinear system that is commonly used in many systems [3-4], 
signal processing [5-6], and system identification [7-8]. These 
models consist of two parts a static block of nonlinear systems 
[9-10] and a dynamic block of linear systems [11-12]. Nonlinear 
Hammerstein structures are widely used in different applications 
such as turntable servo systems [13-14], aeroelastic systems [15-
16], and recurrent neural networks [17-18]. Identifications of non-
linear systems are difficult due to their unpredictable behavior and 
sensitivity to initial conditions. It holds a very important role in 
many fields such as intelligent computing [19-20], machine learn-
ing [21-22], artificial intelligence [23], deep learning [24], fluid 
mechanics [25], structural systems [26], and health monitoring sys-
tems [27-30]. On the whole, the Hammerstein structures [31-32] 
can discriminate between nonlinearities and linear dynamics thus 
making it a multipurpose tool for modeling complicated systems 
in various fields as discussed. It provides insights that aid in the 

control, optimization, and prediction of systems. In optimization 
and search algorithms, there are primarily two types of approach-
es; global search algorithms [33] and local search algorithms [34]. 
Local search algorithms aim to focus on improving a single solu-
tion by iterating and moving to neighboring solutions, often lead-
ing to faster convergence but potentially getting trapped in local 
optima. Some of the local search optimization algorithms are as 
follows least mean square algorithm [35], fractional gradient algo-
rithm [36], and local beam search algorithm [37], etc. On the other 
hand, global search algorithms aim to explore the entire solution 
space to find the global optimum, overcoming the risk of getting 
stuck in local optima. Some of the global search algorithms are as 
follows particle swarm optimization [38], genetic algorithm [39], 
cuckoo-search algorithm [40], improved-shuffled frog leaping al-
gorithm [41], etc. mountain gazelle optimization algorithm [42] 
is also considered a global search algorithm. It is a heuristic tech-
nique inspired by the behavior of gazelles in nature especially their 
way of balancing exploration and exploitation while searching for 
food or shelter in mountain terrains. The algorithm aims to explore 
the solution space broadly to find global optima.

The novel insights of the study are as follows:
●The Mountain Gazelle optimization algorithm (MGO) is exploit-

ed for the identification of the Hammerstein-output error system.
●The fitness function constructed on the error of the mean square 

is premeditated to minimize the gap between the predictable re-
sponse and the real response of the HOE system.

●An auxiliary-model along with key term separation is applied 
to manage the indeterminable terms and simplify cross-product 
terms in the HOES model.

●The efficiency of the mountain gazelle optimization algorithm is 
recognized concerning the precision of predictable parameters, 
converging rapidity, and consistency in assessment with different 
state-of-the-art algorithms.

The graphical representation of the study is depicted in Figure 
1. The model structure of Hammerstein-output error is described 
in section 2. The methodology that defines the algorithm and its 
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working is described in section 3 and the analysis of the study and 
conclusion are described in section 4 and section 5 respectively.

2.　HAMMERSTEIN-OUTPUT ERROR SYSTEM 
(HOES)

The Hammerstein-output error system (HOES) [43] model is 
shown in Figure 2 and mathematically described in Equation (1)

                                                    (1)

where, A(x) denotes the result of the system,  denotes the 
operators of the polynomial shift,  denotes the nonlinear re-
sult and  ϕ(x)represents the noise. The operators of the polynomial 
shift are represented in Equations (2) and (3)

                     (2)

               (3)

The noise free part of the HOES model is shown in Equation 
(4) 

                                                               (4)

as mentioned in Equation (4), the result of the nonlinear part 
as a key term [44] can be expressed in Equation (5) and Equation 
(6)

(5)

(6)

so, the above-shown variables are the vector parameters 
shown below in Equation (7), Equation (8), and Equation (9)

                                                           (7)

                                                      (8)

                                                            (9)

The mathematical expressions of the data vectors are shown 
in Equations (10), (11), and (12)

             (10)

                       (11)

                          (12)

Equations (13), (14), and (15) derive the mathematical ex-
pressions mentioned in Equation (4) to calculate it.

                                                                    (13)

                                (14)

                (15)

The parameter and information vector are represented in 
Equations (16) and (17)

                                                         (16)

                                       (17)

by adding Equation (16) and (17) in (15), the resultant equa-
tion shown in (18)

                                                 (18)

Fig. 1　Graphical depiction of the study

Fig. 2　HOES model layout

3.　The mountain gazelle optimization algorithm 
(MGO)

A hierarchy of mountain wild gazelles and social structure 
inspires the nature-inspired mountain gazelle optimization algo-
rithm. its mathematical model is derived in the following section 
[42].

3.1　Mathematical Model of the Algorithm

The social behavior and life patterns of the mountain ga-
zelle inspire the mountain gazelle optimization algorithm (MGO). 
It made optimization through four key dynamics: bachelor male 
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herds, maternity herds, solitary territorial males, and food migra-
tion. Each gazelle represents a solution that is preserved weak 
ones are discarded and new solutions arise from existing herds. 
The best global solution represents a dominant adult male ga-
zelle in the territory. This process is mathematically formulated 
to simulate the optimization process [42]. Figure 3 shows how the 
exploitation and exploitation phases perform simultaneously, en-
abling solutions to move forward towards the best while exploring 
through four defined mechanisms.

Fig. 3　Solution’s update process of MGO

Equation (19) models the territorial behavior and defense be-
havior () of adult male mountain gazelles as depicted in [42].

(19)

Equation (20) represents the behavioral interactions within 
materiality herds (), including the birth of male gazelles

(20)

Equation (21) shows the territorial battles and competition 
for females among male gazelles (BAMH).

(21)

Equation (22) models the foraging and migratory behavior of 
mountain gazelles (MTSFF).

                              (22)

 where UOB and LOB are the upper and lower bounds. 
These upper described four mechanisms generate new gazelle 
populations with each generation representing one replication. 
High-quality gazelles are retained while weaker ones are removed 
with the best gazelle symbolizing the adult male holding territory 
[42].

4.　RESULTS AND DISCUSSIONS

The outcome of the imitations for the finding of the Hammer-
stein-output error system (HOES) with the mountain gazelle opti-

mization algorithm (MGO) is shown in this portion. The efficacy 
of the mountain gazelle optimization algorithm (MGO) is validat-
ed in noise-less and noise-full conditions i.e., ϕ=0, 0.005, 0.0005, 
and 0.0005. The imitations are performed for the iteration’s level 
of 1200 with a population size of 200. The efficacy is analyzed 
through learning curves, statistical analysis, fitness values, and 
comparison with some other algorithms’ performance compared 
with our proposed algorithms. The results are shown in tables and 
graphical form. The parameters of the mountain gazelle optimiza-
tion algorithm (MGO) are taken from [43] while the parameters of 
the whale optimization algorithm (WOA), grey wolf optimization 
algorithm (GWO), and arithmetic optimization algorithm (AO) 
are taken from [45]-[47]. The imitations are run in MATLAB, core 
i-5 12th generation system. 

4.1　Numerical example of Hammerstein-output error 
system (HOES)

The system weights parameters of the Hammerstein-output 
error system (HOES) are taken from [48]. Figure 4 shows the 
converging curves of our algorithm along with its state-of-the-art 
algorithms showing that our proposed MGO performing well as 
compared to their state-of-the-art algorithm. Figure 5 shows the 
statistical analysis presenting that the MGO is consistent, stable, 
and gives non-fluctuating results as compared to other algorithms, 
and Table 1-4 Shows the best fitness (BF), worst fitness (WF), 
standard deviation (STD), and average fitness (AF) values of all 
the algorithms showing the efficacy and robustness of the MGO. 
From the figure and tables, it is witnessed that the MGO performs 
well in all the noise scenarios i.e., ϕ=0, 0.005, 0.0005, and 0.0005 
in terms of accuracy, robustness, accuracy, and achieving higher 
fitness value.

Table 1　Best fitness, Average fitness, STD, and Worst-fitness 
of all counterparts for ϕ=0

Algorithms BF AF STD WF
MGO 9.9045E-16 6.8341E-13 8.7422E-13 2.0168E-12
AOA 4.3287E-05 4.0727E-03 3.9756E-03 9.9278E-03
GWO 1.1659E-03 5.5810E-03 5.9856E-03 1.5689E-02
WOA 3.5811E-04 3.7039E-03 3.3637E-03 7.6082E-03

Table 2　Best fitness, Average fitness, STD, and Worst-fitness 
of all counterparts for ϕ=0.005

Algorithms BF AF STD WF
MGO 1.5945E-05 1.5945E-05 3.0023E-11 1.5945E-05
AOA 5.5888E-04 1.3288E-03 8.5334E-04 2.3910E-03
GWO 1.6054E-05 6.2923E-03 9.7054E-03 2.3442E-02
WOA 4.0242E-05 5.0465E-04 6.2802E-04 1.3824E-03

Table 3　Best fitness, Average fitness, STD, and Worst-fitness 
of all counterparts for ϕ=0.0005

Algorithms BF AF STD WF
MGO 1.2931E-07 1.2931E-07 8.3850E-19 1.2931E-07
AOA 3.7757E-04 4.4497E-02 9.7904E-02 2.1963E-01
GWO 1.6232E-07 3.2725E-02 6.7279E-02 1.5290E-01
WOA 3.1326E-04 1.0359E-03 4.7936E-04 1.5363E-03
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Table 4　Best fitness, Average fitness, STD, and Worst-fitness 
of all counterparts for ϕ=0.00005

Algorithms BF AF STD WF
MGO 2.6114E-09 2.6114E-09 1.6112E-19 2.6114E-09
AOA 9.0910E-05 1.3025E-03 1.9270E-03 4.7148E-03
GWO 4.5647E-04 2.4002E-03 3.4602E-03 8.5742E-03
WOA 3.4733E-05 3.7979E-04 3.1235E-04 7.6373E-04

Fig. 4　Converging curves of our algorithm along with its 
state-of-the-art algorithms

Fig. 5　Statistical analysis of our algorithm along with its 
state-of-the-art algorithms

To additionally inspect the efficacy of the MGO in terms of 
weight approximation, it is witnessed from Figure 6 and Table 5-8 
that the MGO predicts the correct parameters effectively in all 
noise conditions i.e., ϕ=0, 0.005, 0.0005, and 0.0005 consistently. 
Hence growing the noise affects the performance of the MGAO 
but still, it shows a high level of performance as compared to its 

state of the art.
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Fig. 6　Weight approximation of our algorithm along with its 
state-of-the-art algorithms

Table 5　Weight approximation of all counterparts for ϕ=0

Algorithms W1 W2 W3 W4 W5 W6 W7
MGO -0.500 0.400 0.800 -0.600 1.000 0.500 0.250 
AOA -0.505 0.399 0.776 -0.599 1.062 0.564 0.269 
GWO -0.499 0.398 0.797 -0.577 0.527 -0.099 0.062 
WOA -0.498 0.409 0.752 -0.526 0.854 0.356 0.218 

Actual Weights -0.5 0.4 0.8 -0.61 1 0.5 0.25

Table 6　Weight approximation of all counterparts for 
ϕ=0.005

Algorithms W1 W2 W3 W4 W5 W6 W7
MGO -0.506 0.399 0.786 -0.607 1.039 0.558 0.274 
AOA -0.486 0.400 0.825 -0.570 0.632 -0.030 0.056 
GWO -0.506 0.399 0.787 -0.606 1.034 0.551 0.272 
WOA -0.511 0.405 0.764 -0.588 1.028 0.540 0.269 

Actual Weights -0.5 0.4 0.8 -0.61 1 0.5 0.25

Table 7　Weight approximation of all counterparts for 
ϕ=0.0005

Algorithms W1 W2 W3 W4 W5 W6 W7
MGO -0.506 0.399 0.786 -0.607 1.039 0.558 0.274 
AOA -0.486 0.400 0.825 -0.570 0.632 -0.030 0.056 
GWO -0.506 0.399 0.787 -0.606 1.034 0.551 0.272 

WOA -0.511 0.405 0.764 -0.588 1.028 0.540 0.269 
Actual Weights -0.5 0.4 0.8 -0.61 1 0.5 0.25

Table 8　Weight approximation of all counterparts for 
ϕ=0.00005

Algorithms W1 W2 W3 W4 W5 W6 W7
MGO -0.500 0.400 0.800 -0.600 1.000 0.500 0.250 
AOA -0.499 0.403 0.813 -0.617 1.098 0.672 0.324 
GWO -0.493 0.398 0.809 -0.570 0.778 0.101 0.069 
WOA -0.499 0.402 0.798 -0.589 0.948 0.398 0.201 

Actual Weights -0.5 0.4 0.8 -0.61 1 0.5 0.25

The efficacy and robustness of MGO are also analyzed in 
terms of parameters mean square error of third-order nonlinear 
HOES that is calculated through predicted and calculated param-
eters in all noise scenarios i.e., ϕ=0, 0.005, 0.0005, and 0.0005 as 
shown in Figure 7. It is clear from the graphs that MGO performs 
well in all noise scenarios.
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Fig. 7　The mean square error plot of our algorithm along 
with its state-of-the-art algorithms

5.　CONCLUSION

In this study, the mountain gazelle optimization algorithm 
(MGO) is exploited for the parameter estimation of the Hammer-
stein-output error system, an auxiliary model structure with the 
key-term principle and the finding concludes that the MGO is 
performing well and giving promising outcomes in terms of fit-
ness values, consistent behavior, non-fluctuating outcomes, and 
estimation of original weights of the system showing its robust-
ness and efficacy. The simulation is run on 5 independent runs 
with a population size of 200 on 1200 iterations on different noise 
levels i.e.,  and gave the fitness values of 9.9045E-16, 1.5945E-
05, 1.2931E-07, 2.6114E-09. Future work will explore the per-
formance of MGO for more complex systems such as Fractional 
Hammerstein-output error systems or for more complex nonlin-
earities such as geometric nonlinearity, material nonlinearity, con-
tact nonlinearity, boundary nonlinearity, etc.
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