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Artificial gorilla troops optimization algorithm for key term separated input non-

linear output error system identification

Muhammad Aown Ali !, Naveed Ishtiaq Chaudhary 2*, Maria Malik >, Muhammad Qanat Abbas *

ABSTRACT

This research study gives an overview of the identification of an input non-linear output error system (IN-OES) leveraging
an artificial gorilla troops optimization algorithm (AGTOA). The key term, separated identification auxiliary-based model IN-
OES, with the heuristic optimization algorithm AGTOA, is implemented to predict the parameters of the system. The efficiency
of the swarm-inspired algorithm AGTOA is exploited for the parameter prediction of the IN-OES system, and promising
outcomes were observed through the evaluation of fast convergence, prediction of real parameters of the system, and high fitness
values, such as best fitness values, average fitness values, worst fitness values, and standard deviation values in no-noise and

multiple-noise sce-narios, i.e., .0, 0.00021, 0.0022, 0.023.

Keywords: Non-linear systems; input non-linear output error system; op timization al gorithm; artificial gorilla tro ops optimization

algorithm; heuristic technique.

1. INTRODUCTION

Nonlinear systems [1-3] are intricately interconnected be-
cause of their impulsive behavior, sensitivity to primary condi-
tions, and that the response does not follow a simple linear pat-
tern; that is to say, the fact that their operation is not predictable
[4-5]. Tt is this complexity that makes non-linear systems the most
realistic models of many natural [6] and engineered processes [7-
8]. These systems are typically applicable in various aspects such
as artificial intelligence [9-10], artificial neural networks [11-12],
machine learning [13-15], recommender systems [16-17], cloud
computing [18-19], intelligent computing algorithms [20-22], and
many more.

One commonly studied class of nonlinear systems is the in-
put non-linear output error system (IN-OES) [23]. These models
are particularly important in system identification and control [24-
25], where precisely predicting system performance is crucial for
optimization and performance improvement.

The Input Nonlinear Output Error System (IN-OES) mod-
el combines both static and dynamic mechanisms to capture the
non-linear characteristics of a system. To accurately identify the
parameters of IN-OES models, optimization techniques [31-32]

Manuscript received February 25, 2025; revised April 14, 2025; accepted

May 3, 2025.

! Master’s Student, Department of Computer Science and Information
Engineering, National Yunlin University of Science and Technology,
Taiwan, R.O.C.

2" Assistant Professor (corresponding author), Future Technology Re-
search Center, National Yunlin University of Science and Technology,
Taiwan, R.O.C. (email: chaudni@yuntech.edu.tw)

3 Master’s Student, Department of Economics, S3H, National University
of Sciences and Technology, Islamabad, Pakistan.

4 Student, Department of Computer Science, COMSATS University Is-
lamabad, Pakistan.

are often required. These techniques can be generally character-

ized into local [33-34] and global search algorithms [35-37]. Local

search algorithms such as the least mean square algorithm [38-39],

fractional gradient algorithm [40-41], and local beam search algo-

rithm [42], focus on releasing a single solution through iterative
improvement. While they offer faster convergence, they are likely
to get stuck in local optima. On the other hand, global search al-
gorithms [43] are designed to explore the entire solution space,
thereby mitigating the risk of local optima entrapment. Popular
global optimization techniques include the particle swarm opti-
mization algorithm [44-45], the genetic algorithm [46-47], the
cuckoo-search algorithm [48-49], and the improved shuffled frog

leaping algorithm [50].

A recently developed global optimization algorithm, the Ar-
tificial Gorilla Troops Optimization Algorithm (AGTOA) [51],
draws motivation from the collective intelligence and social be-
haviors of gorilla troops. This heuristic algorithm balances ex-
ploration and exploitation by impersonating the natural foraging,
movement, and survival approaches of gorillas. It is mainly well
suited for solving complex optimization problems such as param-
eter identification in IN-OES models.

The significant parts of the study are as follows
oThe Artificial Gorilla Troops Optimization Algorithm (AGTOA)

is applied for the identification of the input non-linear output er-
ror system (IN-OES).

e A fitness function based on minimizing the mean square error is
formulated to reduce the gap between the predicted response and
the actual response in the IN-OES model.

e An auxiliary model combined with the key term is utilized to
manage the indeterminate and cross-product terms within the IN-
OES structure, simplifying the identification process.

eThe performance is evaluated based on parameter estimation ac-
curacy, learning curve, i.e., convergence speed, and consistent
results in identifying actual parameters.

A graphical picture of the proposed methodology is provided
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in Figure 1. The structure of the input non-linear output error sys-
tem (IN-OES) is provided in Section 2. The working principles
of the AGTOA are discussed in section 3, and the analysis, results,
and conclusion are provided in sections 4 and 5, respectively.

2. INPUT NON-LINEAR OUTPUT ERROR SYS-
TEMS (IN-OES)

Input non-linear output error system (INO-ES) [52] is rep-
resented in Figure 2 and numerically shown in Equation (1) [53]

X() = ;5K + 6(), M)

where, X(i) presents the outcome of the system, 2 shows
polynomial operators, k(i) shows the non-linear outcome and
shows noise. The noise-free portion of IN-OES is represented in

Equation (2) [53]

(i) = S25(), @)

T ()

The resultant equation of the mathematical model of the IN-
OES is shown in Equation (3) [53]

z(@) = p"(HX +0(D). (€)

where, Z(i) is the resultant vector, pT shows the transposition
of parameters and X shows the information vector.
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Fig. 2 Input non-linear output error systems (IN-OES) mod-
el’s visual representation

3. ARTIFICIAL GORILLA TROOPS OPTIMIZA-
TION ALGORITHM (AGTOA)

The Artificial Gorilla Troops Optimization Algorithm (AG-
TOA) [51] takes inspiration from the shared intellect and societal
activities of gorilla troops. This algorithm balances exploration
and exploitation by mimicking the natural foraging, movement,
and survival approaches of gorillas [54]. The update rules of the
AGTOA are shown in Equations 4, 5, and 6.

(UPB — LWB) x x, + LWB rndNum < 4,
(xz = D) X Yy(n) + M X I,rndNum = 0.5 rndNum = 0.5, (4)

HY(n+1) =
Y() =M x (M x (Y(n) = HY, () + x5 X (Y(n) — HY,(n))) TndNum <05,

HY(n+1) =M x P X (Y(n) — Ys5) + Y(n), 5)

HY(n) =Yg — (Ysg X W —Y,, X W) X R. (6)

4. RESULTS AND DISCUSSIONS

The results of the study for identifying the parameters of the
input non-linear output error system (IN-OES) are presented in
this section. The simulations are executed on 2400 number of it-
erations with 24 independent runs and 75 population size. The re-
sults are executed on the MATLAB tool with system specifications
of Intel Core i-5 12th generation with 24 GB of RAM. The results
are shown in table and figure form, showcasing the robustness of
the artificial gorilla troops optimization algorithm (AGTO) for
the IN-OES model. Table 1 shows the accuracy achieved by the
AGTO in multiple noise levels, such as .0, 0.00021, 0.0022, 0.023.
From Table 1, we can say that the AGTOA achieved high accuracy
with no noise, and accuracy becomes low as we increase the noise
level. table 1 shows the best fitness value, average fitness value,
standard deviation value, and worst fitness value. The parameters
of the system are taken from [55].
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Table 1  Best-fitness (B.F), Average-fitness (A.F), and Worst-fitness (W.F) of AGTO

Algorithm Noise level B.F AF W.F S.T.D
.0 1.2942E-30 4.8623E-26 7.1733E-25 1.5734E-25
4.2028E-08 4.2028E-08 4.2028E-08 3.5513E-17
AGTOA
6.1374E-06 6.1374E-06 6.1374E-06 6.0145E-16
3.8209E-04 3.8209E-04 3.8209E-04 5.3807E-15
The learning curves represented in Figure 3 show the con- 102 ¢
vergence speed of the AGTO, how quickly and consistently it
converges to achieve the highest accuracy, and how well it per-
forms in different noise scenarios, i.e., .0, 0.00021, 0.0022, 0.023. 10°
From Table 1, we can clearly state that with no noise, the AGTOA s
gives a fitness of 1.2942E-30, and as we implemented the noise 2 102k 8 = 0.0022
and increased it, the fitness values decreased, such as for the noise 2 -
cap theta equals, .00021, 0.0022, 0.023, the best fitness values are =
4.2028E-08, 6.1374E-06, and 3.8209E-04. 10
Table 2 and Figure 4 show that the AGTOA performed ex-
ceptionally well at identifying the parameters of the input non-lin- 106
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ear output error system (IN-OES). By increasing the noise, the
performance of the algorithm gets low, but it still accurately pre-
dicts the system parameters. From these results, we can say that
the AGTOA performance is well enough to identify the parameters
of IN-OES.
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Table 2 Weight approximation of AGTOA
Algorithm Noise level P.1 P2 P3 P4 P5 P.6 P.7
.0 -1.200 0.700 0.750 0.450 -0.550 0.800 1.910
-1.200 0.700 0.750 0.450 -0.552 0.797 1.909
AGTOA
-1.200 0.700 0.750 0.450 -0.560 0.780 1.901
-1.198 0.698 0.748 0.452 -0.747 0.524 1.820
Actual Parameters -1.2 0.7 0.75 0.45 -0.55 0.8 1.91
Figure 5 shows the best, average, and worst fitness values,
and standard deviation bar plots showcasing how the AGTOA per- 10°
forms in different noisy and no-noise scenarios, i.e., .0, 0.00021, .
0.0022, 0.023. The plots show that AGTOA performs well in all 1
noisy and no-noise scenarios. 1010
§ 12
-24 4 10
10 i 0 =0.00021
L 104 E
10-25 e
107 F
2 102¢
§ 10718
% 10-27 ks
g 0=00

10-28 L

10-29 L

103




Muhammad Aown Ali and Naveed Ishtiag Chaudhary and Maria Malik and Muhammad Qanat Abbas: Artificial gorilla troops optimization algorithm for 4]

10
108k

10-10 .

0 =0.0022

Fitness Values

1012 F

10 E

108

S
3

© =10.023

Fitness Values

10-15 |

] S ao®
e - 2
zi\“\ \Q\\(\ G
@ o Qo
S

S
s
S
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5. Conclusion

In this research study, for the input non-linear output error
system (IN-OES), the heuristic optimization algorithm, artificial
gorilla troops optimization algorithm (AGTOA) is exploited. The
results show that the AGTOA gives promising outcomes in terms
of fast convergence and high fitness values, such as best fitness
values, average fitness values, worst fitness values, and standard
deviation values. AGTOA predicts the parameters of the system in
no-noise and multiple-noise scenarios, such as .0, 0.00021, 0.0022,
0.023. By increasing the noise, a slight variation in predicting the
original parameters is observed, but it is still considered to be a
very well-performing algorithm on that system and gives expected
outcomes. In future work, fractional calculus on the system model
INO-ES or algorithm AGTOA can be implemented with different
nonlinearities such as geometry, material, and contact nonlinear-
ities, or different noise types such as asymmetric noise, Gaussian
noise, etc.
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