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ABSTRACT

This research study gives an overview of the identification of an input non-linear output error system (IN-OES) leveraging 
an artificial gorilla troops optimization algorithm (AGTOA). The key term, separated identification auxiliary-based model IN-
OES, with the heuristic optimization algorithm AGTOA, is implemented to predict the parameters of the system. The efficiency 
of the swarm-inspired algorithm AGTOA is exploited for the parameter prediction of the IN-OES system, and promising 
outcomes were observed through the evaluation of fast convergence, prediction of real parameters of the system, and high fitness 
values, such as best fitness values, average fitness values, worst fitness values, and standard deviation values in no-noise and 
multiple-noise sce-narios, i.e., .0, 0.00021, 0.0022, 0.023.
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1. INTRODUCTION

Nonlinear systems [1-3] are intricately interconnected be-
cause of their impulsive behavior, sensitivity to primary condi-
tions, and that the response does not follow a simple linear pat-
tern; that is to say, the fact that their operation is not predictable 
[4-5]. It is this complexity that makes non-linear systems the most 
realistic models of many natural [6] and engineered processes [7-
8]. These systems are typically applicable in various aspects such 
as artificial intelligence [9-10], artificial neural networks [11-12], 
machine learning [13-15], recommender systems [16-17], cloud 
computing [18-19], intelligent computing algorithms [20-22], and 
many more.

One commonly studied class of nonlinear systems is the in-
put non-linear output error system (IN-OES) [23]. These models 
are particularly important in system identification and control [24-
25], where precisely predicting system performance is crucial for 
optimization and performance improvement.

The Input Nonlinear Output Error System (IN-OES) mod-
el combines both static and dynamic mechanisms to capture the 
non-linear characteristics of a system. To accurately identify the 
parameters of IN-OES models, optimization techniques [31-32] 

are often required. These techniques can be generally character-
ized into local [33-34] and global search algorithms [35-37]. Local 
search algorithms such as the least mean square algorithm [38-39], 
fractional gradient algorithm [40-41], and local beam search algo-
rithm [42], focus on releasing a single solution through iterative 
improvement. While they offer faster convergence, they are likely 
to get stuck in local optima. On the other hand, global search al-
gorithms [43] are designed to explore the entire solution space, 
thereby mitigating the risk of local optima entrapment. Popular 
global optimization techniques include the particle swarm opti-
mization algorithm [44-45], the genetic algorithm [46-47], the 
cuckoo-search algorithm [48-49], and the improved shuffled frog 
leaping algorithm [50].

A recently developed global optimization algorithm, the Ar-
tificial Gorilla Troops Optimization Algorithm (AGTOA) [51], 
draws motivation from the collective intelligence and social be-
haviors of gorilla troops. This heuristic algorithm balances ex-
ploration and exploitation by impersonating the natural foraging, 
movement, and survival approaches of gorillas. It is mainly well 
suited for solving complex optimization problems such as param-
eter identification in IN-OES models.

The significant parts of the study are as follows
●The Artificial Gorilla Troops Optimization Algorithm (AGTOA)

is applied for the identification of the input non-linear output er-
ror system (IN-OES).

●A fitness function based on minimizing the mean square error is
formulated to reduce the gap between the predicted response and
the actual response in the IN-OES model.

●An auxiliary model combined with the key term is utilized to
manage the indeterminate and cross-product terms within the IN-
OES structure, simplifying the identification process.

●The performance is evaluated based on parameter estimation ac-
curacy, learning curve, i.e., convergence speed, and consistent
results in identifying actual parameters.

A graphical picture of the proposed methodology is provided 
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in Figure 1. The structure of the input non-linear output error sys-
tem (IN-OES) is provided in Section 2. The working principles 
of the AGTOA are discussed in section 3, and the analysis, results, 
and conclusion are provided in sections 4 and 5, respectively.

2. INPUT NON-LINEAR OUTPUT ERROR SYS-
TEMS (IN-OES)

Input non-linear output error system (INO-ES) [52] is rep-
resented in Figure 2 and numerically shown in Equation (1) [53]

 (1)	

where, X(i) presents the outcome of the system,  shows 
polynomial operators,  shows the non-linear outcome and  
shows noise. The noise-free portion of IN-OES is represented in 
Equation (2) [53] 

(2)

The resultant equation of the mathematical model of the IN-
OES is shown in Equation (3) [53]

(3)

where, Z(i) is the resultant vector,  shows the transposition 
of parameters and X shows the information vector.

Fig. 1　Graphical representation of the study

Fig. 2　Input non-linear output error systems (IN-OES) mod-
el’s visual representation

3. ARTIFICIAL GORILLA TROOPS OPTIMIZA-
TION ALGORITHM (AGTOA)

The Artificial Gorilla Troops Optimization Algorithm (AG-
TOA) [51] takes inspiration from the shared intellect and societal 
activities of gorilla troops. This algorithm balances exploration 
and exploitation by mimicking the natural foraging, movement, 
and survival approaches of gorillas [54]. The update rules of the 
AGTOA are shown in Equations 4, 5, and 6.

  (4)

               (5)

(6)

4. RESULTS AND DISCUSSIONS

The results of the study for identifying the parameters of the
input non-linear output error system (IN-OES) are presented in 
this section. The simulations are executed on 2400 number of it-
erations with 24 independent runs and 75 population size. The re-
sults are executed on the MATLAB tool with system specifications 
of Intel Core i-5 12th generation with 24 GB of RAM. The results 
are shown in table and figure form, showcasing the robustness of 
the artificial gorilla troops optimization algorithm (AGTO) for 
the IN-OES model. Table 1 shows the accuracy achieved by the 
AGTO in multiple noise levels, such as .0, 0.00021, 0.0022, 0.023. 
From Table 1, we can say that the AGTOA achieved high accuracy 
with no noise, and accuracy becomes low as we increase the noise 
level. table 1 shows the best fitness value, average fitness value, 
standard deviation value, and worst fitness value. The parameters 
of the system are taken from [55].
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The learning curves represented in Figure 3 show the con-
vergence speed of the AGTO, how quickly and consistently it 
converges to achieve the highest accuracy, and how well it per-
forms in different noise scenarios, i.e., .0, 0.00021, 0.0022, 0.023. 
From Table 1, we can clearly state that with no noise, the AGTOA 
gives a fitness of 1.2942E-30, and as we implemented the noise 
and increased it, the fitness values decreased, such as for the noise 
cap theta equals, .00021, 0.0022, 0.023, the best fitness values are 
4.2028E-08, 6.1374E-06, and 3.8209E-04.

Table 2 and Figure 4 show that the AGTOA performed ex-
ceptionally well at identifying the parameters of the input non-lin-
ear output error system (IN-OES). By increasing the noise, the 
performance of the algorithm gets low, but it still accurately pre-
dicts the system parameters. From these results, we can say that 
the AGTOA performance is well enough to identify the parameters 
of IN-OES.

Fig. 3　Learning curves of AGTOA

Table 1　 Best-fitness (B.F), Average-fitness (A.F), and Worst-fitness (W.F) of AGTO

Algorithm Noise level B.F A.F W.F S.T.D

AGTOA

.0 1.2942E-30 4.8623E-26 7.1733E-25 1.5734E-25

4.2028E-08 4.2028E-08 4.2028E-08 3.5513E-17

6.1374E-06 6.1374E-06 6.1374E-06 6.0145E-16

3.8209E-04 3.8209E-04 3.8209E-04 5.3807E-15
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Fig. 4　Parameter’s estimation of AGTOA

Table 2　 Weight approximation of AGTOA

Algorithm Noise level P.1 P.2 P.3 P.4 P.5 P.6 P.7

AGTOA

.0 -1.200 0.700 0.750 0.450 -0.550 0.800 1.910

-1.200 0.700 0.750 0.450 -0.552 0.797 1.909

-1.200 0.700 0.750 0.450 -0.560 0.780 1.901

-1.198 0.698 0.748 0.452 -0.747 0.524 1.820

Actual Parameters -1.2 0.7 0.75 0.45 -0.55 0.8 1.91

Figure 5 shows the best, average, and worst fitness values, 
and standard deviation bar plots showcasing how the AGTOA per-
forms in different noisy and no-noise scenarios, i.e., .0, 0.00021, 
0.0022, 0.023. The plots show that AGTOA performs well in all 
noisy and no-noise scenarios.
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Fig. 5　Fitness values of AGTOA

5. Conclusion

In this research study, for the input non-linear output error
system (IN-OES), the heuristic optimization algorithm, artificial 
gorilla troops optimization algorithm (AGTOA) is exploited. The 
results show that the AGTOA gives promising outcomes in terms 
of fast convergence and high fitness values, such as best fitness 
values, average fitness values, worst fitness values, and standard 
deviation values. AGTOA predicts the parameters of the system in 
no-noise and multiple-noise scenarios, such as .0, 0.00021, 0.0022, 
0.023. By increasing the noise, a slight variation in predicting the 
original parameters is observed, but it is still considered to be a 
very well-performing algorithm on that system and gives expected 
outcomes. In future work, fractional calculus on the system model 
INO-ES or algorithm AGTOA can be implemented with different 
nonlinearities such as geometry, material, and contact nonlinear-
ities, or different noise types such as asymmetric noise, Gaussian 
noise, etc. 
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